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Qualitative analysis of string cosmologies
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A qualitative analysis is presented for spatially flat, isotropic and homogeneous cosmologies derived from
the string effective action when the combined effects of a dilaton, modulus, two-form potential and central
charge deficit are included. The latter has significant effects on the qualitative dynamics. The analysis is also
directly applicable to the anisotropic Bianchi type I cosmology.@S0556-2821~99!01112-1#

PACS number~s!: 98.80.Cq, 04.50.1h, 98.80.Hw
co
-

an
n
nt
in
e

he
ity
eo
i-
eu
a
pic

ric

o-

ci
es
ld
th

to

s
the

n
-
.
e-
gy

en-
s of
f-

nt.
is
hat
the

ld
inary

ga-
V,
ses

g
les.
or-

e-
I. INTRODUCTION

There has been considerable interest recently in the
mological implications of string theory. String theory intro
duces significant modifications to the standard, hot big b
model based on conventional Einstein gravity and early u
verse cosmology provides one of the few environme
where the predictions of the theory can be quantitatively
vestigated. A study of string cosmologies is therefore w
motivated.

The evolution of the very early universe much below t
string scale and for string coupling much smaller than un
gs!1, is determined by ten-dimensional supergravity th
ries@1–3#. All theories of this type contain a dilaton, a grav
ton and a two-form potential in the Neveu-Schwarz–Nev
Schwarz~NS-NS! bosonic sector. If one considers a Kaluz
Klein compactification from ten dimensions onto an isotro
six-torus of radiuseb, the effective action is given by

S5E d4xA2ge2FFR1~¹F!226~¹b!2

2
1

12
HmnlHmnl22L G , ~1.1!

whereR is the Ricci curvature of the spacetime with met
gmn , g[detgmn , the dilaton field,F, parametrizes the string
coupling,gs

2[eF, andHmnl[] [mBnl] is the field strength of
the two-form potential,Bmn . The volume of the internal di-
mensions is parametrized by the modulus field,b. The
moduli fields arising from the compactification of the tw
form on the internal dimensions have been neglected@4#.
The constant,L, is determined by the central charge defi
of the string theory. In principle, it may take arbitrary valu
if the string is coupled to an appropriate conformal fie
theory. Such a term may also have an origin in terms of
reduction of higher degree form fields@5#.

In four dimensions, the three-form field strength is dual
a one-form:
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Hmnl[eFemnlk¹ks, ~1.2!

where emnlk is the covariantly constant four-form. In thi
dual formulation, the field equations can be derived from
action

S5E d4xA2ge2FFR1~¹F!226~¹b!2

2
1

2
e2F~¹s!222L G , ~1.3!

wheres is interpreted as a pseudo-scalar ‘‘axion’’ field@6#.
It can be shown that the action~1.3! is invariant under a
global SL(2,R) transformation on the dilaton and axio
fields when L vanishes @6#. The general Friedmann
Robertson-Walker~FRW! cosmologies derived from Eq
~1.3! with L50 have been found by employing this symm
try @7#. However, the symmetry is broken when a strin
cosmological constant is present@8# and the general FRW
solution is not known in this case.

The purpose of the present paper is to determine the g
eral structure of the phase space of solutions for the clas
spatially flat, FRW string cosmologies derived from the e
fective action~1.3! when a cosmological constant is prese
This is well motivated from a theoretical point of view and
also relevant in light of recent high redshift observations t
indicate a vacuum energy density may be dominating
large-scale dynamics of the universe at the present epoch@9#.

The paper is organized as follows. In Sec. II, the fie
equations are presented as an autonomous system of ord
differential equations~ODEs!. The combined effects of the
axion, modulus and dilaton fields are determined for a ne
tive and positive central charge deficit in Secs. III and I
respectively. This extends previous qualitative analy
where one or more of these terms was neglected@10–14#. A
full stability analysis is performed for all cases by rewritin
the field equations in terms of a set of compactified variab
We conclude in Sec. V with a discussion of the phase p
traits.

II. COSMOLOGICAL FIELD EQUATIONS

The spatially flat, FRW cosmological field equations d
rived from the action~1.3! are given by
©1999 The American Physical Society05-1
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2ä22ȧẇ2ṡ2e2w16a50 ~2.1!

2ẅ2ẇ223ȧ226ḃ21
1

2
ṡ2e2w16a12L50 ~2.2!

b̈2ḃẇ50 ~2.3!

s̈1ṡ~ ẇ16ȧ !50, ~2.4!

where

w[F23a ~2.5!

defines the ‘‘shifted’’ dilaton field,a[ea is the scale factor
of the universe and an overdot denotes differentiation w
respect to cosmic time,t. The generalized Friedmann con
straint equation is

3ȧ22ẇ216ḃ21
1

2
ṡ2e2w16a12L50. ~2.6!

A number of exact solutions to Eqs.~2.1!–~2.6! are
known when one or more of the degrees of freedom
trivial. We now discuss those that represent the invariant
of the full phase space of solutions. The ‘‘dilaton-vacuum
solutions, where only the dilaton field is dynamically impo
tant, are given by

a5a* utu1/p6 ~2.7!

eF5eF
* utup621,

where p6[6A3 and $a* ,F* % are arbitrary constants
There is a curvature singularity att50. The solution~2.7!
forms the basis of the pre-big-bang scenario, where a gr
ing string coupling can drive an epoch of inflationary~accel-
erated! expansion@15#. The pre-big-bang phase correspon
to thep5p2 solution over the ranget,0 and the post-big-
bang phase to thep5p1 solution for t.0 @15#. The infla-
tionary nature of this scenario has recently been questio
however@16#.

The ‘‘dilaton-moduli-vacuum’’ solutions, withṡ5L50,
are given by

a5a* utu6h
* ~2.8!

eF5eF
* utu63h

*
21

eb5eb
* utu6A(123h

*
2 )/6,

where$h* ,b* % are constants. This class of solution can a
be expressed in the form

a5a* U s

s*
U (11r 6)/2

~2.9!

eF5eF
*U s U r 6
s*
12350
h

e
ts

’

-

s

d,

o

eb5eb
*U s

s*
Uq

,

where $s* ,q,r 6% are constants ands[* tdt8/a(t8) is con-
formal time. The generalized Friedmann constraint equa
~2.6! leads to the constraintr 656(3212q2)1/2.

The general solution where onlyL50 is the ‘‘dilaton-
moduli-axion’’ solution@7#

a5a* U s

s*
U1/2FU s

s*
U r

1U s

s*
U2r G1/2

eF5
eF

*

2 FU s

s*
U r

1U s

s*
U2r G

s5s* 6e2F
* F us/s* u2r2us/s* ur

us/s* u2r1us/s* ur G
eb5eb

*U s

s*
Uq

, ~2.10!

wheres* is an arbitrary constant andr[ur 6u. This cosmol-
ogy asymptotically approaches one of the dilaton-mod
vacuum solutions~2.9! in the limits of high and low space
time curvature. The axion field induces a smooth transit
between these two power-law solutions and causes a bo
to occur. It is only dynamically important for a short tim
interval whens's* @7#.

The solutions where only the axion field is trivial andL
.0 are specific cases of the ‘‘rolling radii’’ solutions@17#

a5a* utanh~At/2!um

e2F5e2F
* ucosh~At/2!u2k26nusinh~At/2!u2l 16n

eb5eb
* utanh~At/2!un, ~2.11!

whereA[A2L and the real numbers$k,l ,m,n% satisfy the
constraints

3m216n251, 3m16n5k2 l , k1 l 51. ~2.12!

The corresponding solutions forL,0 are related to Eqs
~2.11! by redefiningA[2 iÃ. In this case, the range oft is
bounded such that 0,t,p/Ã.

Finally, there exists the ‘‘linear dilaton vacuum’’ solutio
where L.0 @18#. This solution is static and the dilato
evolves linearly with time:

ȧ50, ḃ50, F56A2Lt. ~2.13!

The field equations~2.1!–~2.6! may be written as the fol-
lowing system of autonomous ODEs:

ḣ5c21hc23h22N22L ~2.14!

ċ53h21N ~2.15!

Ṅ52Nc ~2.16!
5-2



gy

f
s

ue
n
n

it

th
as

hi

efi

he

he

is
ical

n

ves
aint
e

ld

ose
nt
that

t
e the

QUALITATIVE ANALYSIS OF STRING COSMOLOGIES PHYSICAL REVIEW D59 123505
ṙ526hr ~2.17!

3h22c21N1
1

2
r12L50, ~2.18!

where we have defined the new variables

N[6ḃ2, r[ṡ2e2w16a, c[ẇ, h[ȧ. ~2.19!

The variabler may be interpreted as the effective ener
density of the pseudo-scalar axion field@13#. It follows from
Eq. ~2.15! that c is a monotonically increasing function o
time and this implies that the equilibrium points of the sy
tem of ODEs must be located either at zero or infinite val
of c. In addition, as a result of the existence of a monoto
function, it follows that there are no periodic or recurre
orbits in the phase space@19,20#. The setsL50 andr50
are invariant sets. In particular, the exact solution forL50
given by Eqs.~2.10! divides the phase space and the orb
do not cross from positive to negativeL.

We now proceed to consider the cases whereL,0 and
L.0 separately.

III. ANALYSIS FOR NEGATIVE CENTRAL
CHARGE DEFICIT

A. Four-dimensional model

In this section we consider the phase portraits of
NS-NS fields for negative central charge deficit. In the c
where the modulus field is frozen,N50, Eq. ~2.18! may be
employed to eliminate the axion field’s energy density. T
reduces the set of equations~2.14!–~2.17! to a two-
dimensional system. Moreover, it follows from Eq.~2.18!
that

c222L>3h2>0 ~3.1!

and we may therefore compactify the phase space by d
ing the new variables

h[
c

Ac222L
~3.2!

j[
A3h

Ac222L
~3.3!

and a new time variable

d

dt
[

1

Ac222L

d

dt
. ~3.4!

Equations~2.14! and ~2.15! then become

dh

dt
5j2~12h2! ~3.5!

dj

dt
5~A31hj!~12j2!. ~3.6!
12350
-
s
e
t

s

e
e

s

n-

The variables defined in Eqs.~3.2! and~3.3! are bounded,
h2<1 andj2<1, and it follows from Eqs.~3.5! and ~3.6!
that they are both monotonically increasing functions. T
equilibrium points are located atj25h251. The invariant
setsr50 andL50 correspond to the conditionsj251 and
h251, respectively. A stability analysis indicates that t
equilibrium point A:(h,j)5(1,1) is an attractor and the
point R:(h,j)5(21,21) is a repeller. The pointsS1,2:(1,
21) and (21,1) are both saddles. The phase portrait
given in Fig. 1 and is discussed in Sec. V, where a phys
interpretation is given.

B. Ten-dimensional model

We now consider the effect of lifting the solutions to te
dimensions by including the modulus field,b. This will raise
the dimension of the phase space to 3. In this case, it pro
convenient to employ the generalized Friedmann constr
equation~2.18! to eliminate the modulus field rather than th
axion field. This equation can be written as

12j22k5
N

c222L
, ~3.7!

where the new variablek is defined by

k[
r

2~c222L!
~3.8!

and satisfies 0<k<1. Employing Eqs.~3.2!–~3.4!, we can
now express the field equations~2.14!–~2.17! in the form

FIG. 1. The phase portrait of the system~3.5!,~3.6! correspond-
ing to the four-dimensional NS-NS model with no modulus fie
and negative central charge deficit (L,0). Equilibrium points are
denoted by dots and the labels in all figures correspond to th
equilibrium points~and hence the exact solutions they represe!
discussed in the text. We shall adopt the convention throughout
large black dots represent sources~i.e., repellers!, large grey-filled
dots represent sinks~i.e., attractors!, and small black dots represen
saddles. Arrows on the trajectories have been suppressed sinc
direction of increasing time is clear using this notation.
5-3



arge
e those
al phase

BILLYARD, COLEY, AND LIDSEY PHYSICAL REVIEW D 59 123505
FIG. 2. The phase portrait of the system~3.9!–~3.11!. This corresponds to the ten-dimensional NS-NS model with negative central ch
deficit (L,0). Grey lines represent typical trajectories found within the two-dimensional invariant sets, dashed black lines ar
trajectories along the intersection of the invariant sets, and solid black lines are typical trajectories within the full three-dimension
space. Note thatL6 denote lines of non-isolated equilibrium points. See also caption to Fig. 1.
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n

-

um
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ht-

c-

the
re
is,
dh

dt
5~12k!~12h2! ~3.9!

dj

dt
5k~A31hj! ~3.10!

dk

dt
522k@A3j1h~12k!#.

~3.11!

We note that the invariant setN50 corresponds tok51
2j2, in which case the above system of ODEs reduces to
two-dimensional system~3.5!,~3.6!.

The equilibrium points of this system of ODEs all lie o
one of the two lines of non-isolated equilibrium points~or
one-dimensional equilibrium sets!

L6 :h0
251,k50, ~3.12!

wherej is arbitrary. The corresponding eigenvalues arel1

522h0 and l2522(A3j1h0), and hence these equilib
rium sets are normally hyperbolic~throughout, we shall re-
frain from giving the corresponding eigenvectors explicitly!.
The third eigenvalue is zero since this is a set of equilibri
12350
e

points. Thus, on the lineL1 :(h051,k50;j) the equilib-
rium points are saddles forjP@21,21/A3) and local sinks
for jP(21/A3,1#. On the lineL2 :(h0521,k50;j) the
equilibrium points are local sources forjP@21,1/A3) and
saddles forjP(1/A3,1#. The phase portrait is given in Fig
2. The dynamics is very simple due to the fact that the rig
hand sides of Eqs.~3.9! and ~3.10! are positive-definite and
henceh and j are always monotonically increasing fun
tions. The curved upper boundaryk512j2 denotes the in-
variant setN50 and therefore corresponds to Fig. 1.

IV. ANALYSIS FOR POSITIVE CENTRAL
CHARGE DEFICIT

In the case where the central charge deficit is positive,
variablec222L is no longer positive-definite and therefo
cannot be employed to normalize the system. In view of th
we choose the normalization

e[S 3h21
1

2
r1N12L D 1/2

. ~4.1!

The generalized Friedmann constraint equation~2.18! now
takes the simple form
5-4
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c2

e2
51 ~4.2!

and may be employed to eliminatec. Since by definitione
>0, specifying one of the rootsc/e561 corresponds to
choosing the sign ofc. However, it follows from the defini-
tion in Eq. ~2.19! that changing the sign ofc is related to a
time reversal of the dynamics. In what follows, we sh
consider the casec/e511; the casec/e521 is qualita-
tively similar.

Introducing the new variables

m[
A3h

e
, n[

r

2e2
, l[

N

e2
~4.3!

and a new dynamical variable

d

dT
[

1

A3e

d

dt
~4.4!

transforms Eqs.~2.14!–~2.17! to the three-dimensional au
tonomous system

dm

dT
5n1

m

A3
@12m22l# ~4.5!

dn

dT
522nFm1

1

A3
~l1m2!G ~4.6!

dl

dT
5

2

A3
l~12m22l!. ~4.7!

The phase space variables are bounded by the conditio
<$m2,n,l%<1 and also satisfym21n1l<1. The setsn
50 andl50 are invariant sets corresponding tor50 and
ḃ50, respectively. In addition,m21n1l51 is an invariant
set corresponding toL50. We note that the right-hand sid
of Eq. ~4.7! is positive-definite and this simplifies the dynam
ics considerably.

The equilibrium points of the system~4.5!–~4.7! consist
of the isolated equilibrium point

C:m5n5l50 ~4.8!

and the line of non-isolated equilibrium points

V:n50, l512m2 ~m arbitrary!. ~4.9!

The eigenvalues associated withC are l151/A3, l2

52/A3 andl350. Although this isolated singular pointC is
non-hyperbolic, a simple analysis shows that it is a glo
source. The eigenvalues associated withV are

l1522S m1
1

A3
D , l252

2

A3
~4.10!
12350
l

0

l

and the third eigenvalue is zero sinceV is an equilibrium set.
Therefore, onV the equilibrium points are saddles form
P@21,21/A3) and local sinks formP(21/A3,1#. The
phase portrait is given in Fig. 3.

It is also instructive to consider the dynamics on t
boundary corresponding tol50, since the caseN50 is of
physical interest in its own right as a four-dimension
model. In this case the ODEs reduce to the two-dimensio
system

dm

dT
5n1

m

A3
~12m2! ~4.11!

dn

dT
522mnF11

1

A3
mG . ~4.12!

The equilibrium points and their corresponding eigenvalu
are

C: m5n50; l15
1

A3
, l250 ~4.13!

S: m521, n50; l152
2

A3
, l252S 12

1

A3
D ~4.14!

A: m51,n50; l152
2

A3
, l2522S 11

1

A3
D . ~4.15!

Point C is a non-hyperbolic equilibrium point; however, b
changing to polar coordinates we find thatC is a repeller
with an invariant rayu5tan21(2A3). The saddleS and the
attractorA lie on the lineV. The phase portrait is given in
Fig. 4.

This concludes the analysis of the phase portraits for
FRW string cosmologies containing non-trivial NS-N
fields.

V. DISCUSSION

The phase portraits have a number of interesting featu
In Fig. 1 the modulus field is frozen and the universe co
tracts from a singular initial state. The orbits in the vicini
of the equilibrium pointR are asymptotic to thep5p2

dilaton–vacuum solution~2.7!. The axion is negligible and
the kinetic energy of the dilaton dominates the ener
momentum tensor. As the collapse proceeds, however,
axion becomes dynamically more important and eventu
induces a bounce. In the case of vanishingL, Eqs. ~2.10!
imply that the future attractor would correspond to thep
5p1 dilaton-vacuum solution. However, the combined e
fect of the axion and central charge is to cause the unive
to evolve towards the equilibrium pointA, whereȧ→1`, in
5-5
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FIG. 3. The phase portrait of the system~4.5!–~4.7! corresponding to the ten-dimensional NS-NS model with positive central ch
deficit (L.0). The rootc/e511 of Eq.~4.2! has been chosen. Note thatV denotes a line of non-isolated equilibrium points. See capti
to Figs. 1 and 2.
o
s

io
e
o
e

ni-
be

this
ists
uni-
logi-
er’s

es

m
vi-
a

n-

e
c,

n

ve
-

to

rg
.

a finite time. This behavior differs from that found when n
axion field is present, because in this latter case there i
bounce@11,17#.

This behavior can be understood by viewing the ax
field as a membrane@21#. Since this field is constant on th
surfaces of the homogeneity, the field strength of the tw
form potential must be directly proportional to the volum

FIG. 4. Phase portrait of the system~4.11!,~4.12! corresponding
to the four-dimensional NS-NS model with positive central cha
deficit (L.0). The rootc/e511 of Eq. ~4.2! has been chosen
See caption to Fig. 1.
12350
no

n

-

form of the three-space. If the spatial topology of the u
verse is that of an isotropic three-torus, the axion field can
formally interpreted as a membrane wrapped around
torus @21#. As the universe collapses, the membrane res
being squashed into a singular point and this forces the
verse to bounce into an expansionary phase. The cosmo
cal constant then dominates the axion field as the latt
energy density decreases.

The inclusion of a modulus field leads to a line of sourc
and sinks for the orbits~see Fig. 2!. The axion field is dy-
namically negligible in the neighborhood of the equilibriu
points. Moreover, a bouncing cosmology is no longer ine
table and there exist solutions that expand to infinity in
finite time. The solutions are asymptotic to the dilato
moduli-vacuum solutions~2.9! near the linesL6 . The
boundary pointsj251/3 on these lines correspond to th
limiting cases whereȧ25ḃ2. These represent the isotropi
ten-dimensional cosmology (ȧ5ḃ) and its dual solution
(ȧ52ḃ). In the latter solution, the ten-dimensional dilato
field, F̂[F16b, is constant.

In Figs. 3 and 4, the isolated equilibrium pointC corre-
sponds to the ‘‘linear dilaton vacuum’’ solution~2.13!
@11,18#. When the modulus is frozen, all trajectories evol
away fromC towards the pointA and approach the superin
flationaryp5p2 dilaton-vacuum solution~2.7! defined over
t,0. Some of the orbits evolving away fromC represent
contracting cosmologies and the effect of the axion is

e

5-6
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reverse the collapse in all these cases. For the rolling mo
lus solution~Fig. 3!, the orbits tend to the dilaton-modul
vacuum solutions as they approach the attractors~the sinks
on V). As in the case of a negative central charge, the crit
value m251/3 corresponds to the case whereȧ25ḃ2. The
other boundary ofV is the point A representing the cas
where the kinetic energy of the modulus field vanishes. T
qualitative behavior of models withc,0 is similar.

The results presented in this paper can be directly app
to the class of spatially flat and homogeneous Bianchi typ
models by reinterpreting the physical meaning of the mo
lus field, b. The line element for the axisymmetric type
model is given by ds252dt21hab(t)dxadxb (a,b
51,2,3), where the metric on the surfaces of homogeneit
defined byhab[e2adiag@22b,b,b# @22#. The field equa-
tions derived from action~1.1! for this background are for
mally identical to those presented in Sec. II@23#. In this
anisotropic model, however, the variablesa andb now pa-
rametrize the averaged scale factor and the shear param
of the universe, respectively. It would be interesting to
vestigate whether the above results can be employed to s
the question of isotropization in string cosmologies.

Finally, we observe that all of the exact solutions cor
sponding to the equilibrium points of the governing auton
mous systems of ODEs are self-similar since in each case
J.

’’

nd

12350
u-

al

e

d
I
-

is

ter
-
dy

-
-
he

scale factor is a power-law function of cosmic time@see, for
example, Eq.~2.8!# @24#. This result can be proved in gen
eral. For example, all of the equilibrium points of the syste
of ODEs ~3.9!–~3.11! necessarily haveh5const~leading to
a power-law solution! or L50, whence from the exac
‘‘dilaton-moduli-axion’’ solution ~2.10! we can see that as
ymptotically the scale factor is power-law. This implies th
exact self-similar solutions play an important role in det
mining the asymptotic behavior of string cosmologies@19#.

In conclusion, therefore, we have presented a qualita
analysis of the spatially flat, FRW string cosmologies co
taining non-trivial dilaton, axion and modulus fields togeth
with a central charge deficit~stringy cosmological constant!.
In all cases, variables were found that led to a compactifi
tion of the phase space and this allowed a complete stab
analysis to be performed. Both four- and ten-dimensio
models were studied by including the dynamics of the mo
lus field. The combined effects of the axion field and cent
charge deficit on the qualitative behavior of the dilato
moduli-vacuum solutions~2.8! were determined. We found
that such terms have a significant effect on the dynamics

A.P.B. is supported by Dalhousie University, A.A.C.
supported by the Natural Sciences and Engineering Rese
Council of Canada~NSERC!, and J.E.L. is supported by th
Royal Society.
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