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Qualitative analysis of string cosmologies
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A qualitative analysis is presented for spatially flat, isotropic and homogeneous cosmologies derived from
the string effective action when the combined effects of a dilaton, modulus, two-form potential and central
charge deficit are included. The latter has significant effects on the qualitative dynamics. The analysis is also
directly applicable to the anisotropic Bianchi type | cosmoldg0556-282199)01112-1

PACS numbes): 98.80.Cq, 04.56:h, 98.80.Hw

I. INTRODUCTION Hﬂ")\ze‘peﬂ”)"‘vka, (1.2

There has been considerable interest recently in the coyvhere e*”** is the covariantly constant four-form. In this
mological implications of string theory. String theory intro- dua}I formulation, the field equations can be derived from the
duces significant modifications to the standard, hot big bangction
model based on conventional Einstein gravity and early uni-
verse cosmology provides one of the few environments S= j déx\/—ge ®
where the predictions of the theory can be quantitatively in-
vestigated. A study of string cosmologies is therefore well 1
motivated. — —e®®(Vg)2-2A

The evolution of the very early universe much below the 2
B e tSuheres i rpreted s a peuo-scalar “axion” 6
rifas[l'—3] All theories of this type contain a dilaton, a gravi- It can be shown that the actiofl.3) is invariant under a

: Lo ' global SL(2R) transformation on the dilaton and axion
ton and a two-form potential in the Neveu-Schwarz—Neveus

; ; fields when A vanishes [6]. The general Friedmann-
Schwarz(NS-N9S bosonic sector. If one considers a Kaluza- . .
. L . : . ._Robertson-Walker(FRW) cosmologies derived from Eq.
Klein compactification from ten dimensions onto an isotropic

six-torus of radiug”, the effective action is given by (1.3 with A=0 have been found by employing this symme-
try [7]. However, the symmetry is broken when a stringy
Szf d*x\—ge ®

R+(V®)2—-6(VB)?

: (1.3

cosmological constant is prese@ and the general FRW
R+(Vd)2—6(VB)2 solution is not known in this case.
The purpose of the present paper is to determine the gen-
eral structure of the phase space of solutions for the class of
—H/MHW“—ZA}, (1.)  spatially flat, FRW string cosmologies derived from the ef-
fective action(1.3) when a cosmological constant is present.
This is well motivated from a theoretical point of view and is
also relevant in light of recent high redshift observations that
indicate a vacuum energy density may be dominating the
large-scale dynamics of the universe at the present gf8jch
The paper is organized as follows. In Sec. I, the field
equations are presented as an autonomous system of ordinary
" differential equation§ODES. The combined effects of the
axion, modulus and dilaton fields are determined for a nega-
tive and positive central charge deficit in Secs. Ill and IV,
respectively. This extends previous qualitative analyses
where one or more of these terms was neglefi®d-14. A
Gunl stability analysis is performed for all cases by rewriting
the field equations in terms of a set of compactified variables.
We conclude in Sec. V with a discussion of the phase por-

whereR is the Ricci curvature of the spacetime with metric
d.,,» g=deg,,, the dilaton field®, parametrizes the string
coupling,gi=e?, andH ,,,=d,B,,; is the field strength of
the two-form potentialB,,,. The volume of the internal di-
mensions is parametrized by the modulus fieRl, The
moduli fields arising from the compactification of the two
form on the internal dimensions have been negle¢tdd
The constantA, is determined by the central charge deficit
of the string theory. In principle, it may take arbitrary values
if the string is coupled to an appropriate conformal field
theory. Such a term may also have an origin in terms of th
reduction of higher degree form fields].

In four dimensions, the three-form field strength is dual to

a one-form: traits.
. . II. COSMOLOGICAL FIELD EQUATIONS
*Electronic address: jaf@mscs.dal.ca
"Electronic address: aac@mscs.dal.ca The spatially flat, FRW cosmological field equations de-
*Electronic address: jlidsey@astr.cpes.susx.ac.uk rived from the action1.3) are given by
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s |9

2a—2a¢p— d?e?*t8=0 (2.2 B o

*

. . . 1.
20— ¢?—3a°—6B°+ 50262‘”6“4- 2A=0 (22  where{s, ,q,r.} are constants ang= ['dt'/a(t’) is con-
formal time. The generalized Friedmann constraint equation
. (2.6) leads to the constraimt, = + (3—129%) 2,
B—Be=0 (2.3 The general solution where onl¥ =0 is the “dilaton-
moduli-axion” solution[7]

octo(p+6a)=0, (2.9 SISl | g|-r12
where =5 |lsd Tls,
(PE(I)_?JCY (25) eq)* S r S -r
_
e frd R— J—
defines the “shifted” dilaton fielda=e“ is the scale factor 2 |Is. S«
of the universe and an overdot denotes differentiation with _ ;
respect to cosmic time, The generalized Friedmann con- o=+ P |S/s¢|""—[s/s,]
straint equation is * |s/s,| " +|s/s, "
RN TPCR SN T NP, s |4
3a —p°+68 +§0' e~ TP+ 2A=0. (2.6 B = efx| — (2.10
*

A number of exact solutions to Eq$2.1)—(2.6) are  whereo, is an arbitrary constant and=|r ..|. This cosmol-
known when one or more of the degrees of freedom aregy asymptotically approaches one of the dilaton-moduli-
trivial. We now discuss those that represent the invariant setgacuum solutiong2.9) in the limits of high and low space-
of the full phase space of solutions. The “dilaton-vacuum” time curvature. The axion field induces a smooth transition
solutions, where only the dilaton field is dynamically impor- between these two power-law solutions and causes a bounce
tant, are given by to occur. It is only dynamically important for a short time

interval whens~s, [7].
a=a,|t|"P= (2.7 The solutions where only the axion field is trivial aAd
>0 are specific cases of the “rolling radii” solutiof47]
e®=ePx|t|P="1,
a=a, [tanh At/2)|™
where p.==*+3 and {a, ,®,} are arbitrary constants.

There is a curvature singularity &&0. The solution(2.7) e~ P=e"Px|cosiAt/2)|2*~®"sinh At/2)|# 6"
forms the basis of the pre-big-bang scenario, where a grow- |
ing string coupling can drive an epoch of inflationdagcel- ef=ePx|tanhAt/2)]", (211

erated expansion 15]. The pre-big-bang phase corresponds B _
to thep=p_ solution over the range<0 and the post-big- WNereA=y2A and the real number,|,m,n; satisfy the

bang phase to thp=p, solution fort>0 [15]. The infla-  constraints

tionary nature of this scenario has recently been questioned, 3m?+6n2=1, 3m+6n=k—I, k+l=1. (2.12
however[16].
The “dilaton-moduli-vacuum” solutions, wite=A=0, The corresponding solutions fok<0 are related to Egs.
are given by (2.11) by redefiningA=—iA. In this case, the range ofis
a—a, [t[*N 2.9 bounded such that0t<w/A.
* ' Finally, there exists the “linear dilaton vacuum” solution
& D1l +3h. 1 where A>0 [18]. This solution is static and the dilaton
e"=e *|t| * . . . i
evolves linearly with time:
ef = efs [t = VL-3n)ie a=0, pB=0, ®==2At. (2.13
where{h, ,8,} are constants. This class of solution can also  The field equation$2.1)—(2.6) may be written as the fol-
be expressed in the form lowing system of autonomous ODEs:
s |(tra)2 h=y?+hy—3h?—N—2A (2.14
a=a, ~ (2.9
* y=3h%+N (2.15
re .
e?=eP+|— N=2Ngy (2.16
*
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p=—6hp (2.17 3
1 /l\ 4
S
3h2—¢2+N+§p+2A=0, (2.18 : >
where we have defined the new variables
N=6B2, p=c2e®*"% y=¢p, h=a. (2.19 e

The variablep may be interpreted as the effective energy
density of the pseudo-scalar axion fi¢lsB]. It follows from
Eq. (2.15 that ¢ is a monotonically increasing function of
time and this implies that the equilibrium points of the sys-
tem of ODEs must be located either at zero or infinite values i s,

of . In addition, as a result of the existence of a monotone R

function, it follows that there are no periodic or recurrent  FiG. 1. The phase portrait of the systé@5),(3.6) correspond-
orbits in the phase spa¢&9,20. The setsA=0 andp=0  ing to the four-dimensional NS-NS model with no modulus field
are invariant sets. In particular, the exact solutionAot0  and negative central charge deficit €0). Equilibrium points are
given by Egs.(2.10 divides the phase space and the orbitsdenoted by dots and the labels in all figures correspond to those

do not cross from positive to negative equilibrium points(and hence the exact solutions they represent
We now proceed to consider the cases whkre0 and  discussed in the text. We shall adopt the convention throughout that
A>0 separately. large black dots represent sourdes., repellers large grey-filled
dots represent sinkg.e., attractors and small black dots represent
. ANALYSIS FOR NEGATIVE CENTRAL saddles. Arrows on the trajectories have been suppressed since the
CHARGE DEFICIT direction of increasing time is clear using this notation.
A. Four-dimensional model The variables defined in Eq¢3.2) and(3.3) are bounded,

In this section we consider the phase portraits of then’<1 andé?<1, and it follows from Egs(3.5) and (3.6)
NS-NS fields for negative central charge deficit. In the caséhat they are both monotonically increasing functions. The
where the modulus field is frozeN=0, Eq.(2.18 may be equilibrium points are located a= »*=1. The invariant
employed to eliminate the axion field's energy density. Thissetsp=0 andA =0 correspond to the conditiod$=1 and
reduces the set of equation®.14—(2.17 to a two- n»?=1, respectively. A stability analysis indicates that the
dimensional system. Moreover, it follows from E@.18  equilibrium point A:(75,£)=(1,1) is an attractor and the
that point R:(7,£)=(—1,—1) is a repeller. The pointS, ,:(1,

—1) and (—1,1) are both saddles. The phase portrait is
¢?—2A=3h*=0 (3.)  given in Fig. 1 and is discussed in Sec. V, where a physical

. _interpretation is given.
and we may therefore compactify the phase space by defin-

ing the new variables
B. Ten-dimensional model

We now consider the effect of lifting the solutions to ten

_ ¥
7= V2 —2A 3.2 dimensions by including the modulus field, This will raise
the dimension of the phase space to 3. In this case, it proves
J3h convenient to employ the generalized Friedmann constraint
=" (3.3  equation(2.18) to eliminate the modulus field rather than the
Ve =2A axion field. This equation can be written as
and a new time variable N
1-&—«k= : (3.7
d 1 d PP—2A
d_TE—wz—ZA a0 (3.9
where the new variable is defined by
Equations(2.14) and(2.15 then become
d7_ 2 k=—Ft (3.9
E_g (=99 (3.5 2(¢2—2A)
dé 2 and satisfies & k<1. Employing Eqs(3.2—(3.4), we can
E_(\/§+ 76)(1=£. @O ow express the field equatiof®.14—(2.17) in the form
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FIG. 2. The phase portrait of the systé®19)—(3.11). This corresponds to the ten-dimensional NS-NS model with negative central charge
deficit (A<0). Grey lines represent typical trajectories found within the two-dimensional invariant sets, dashed black lines are those
trajectories along the intersection of the invariant sets, and solid black lines are typical trajectories within the full three-dimensional phase
space. Note thdt. denote lines of non-isolated equilibrium points. See also caption to Fig. 1.

7 ) points. Thus, on the lind , :(79=1,k=0;&) the equilib-
3, 1=0=7) (3.9 rium points are saddles fare [ —1,— 1/1/3) and local sinks
for £e(—1/y/3,1]. On the lineL_:(5y=—1,,k=0;&) the

dé equilibrium points are local sources fégr=[—1,1A/3) and

ar K(\3+7é) (310  saddles forte (1/y/3,1]. The phase portrait is given in Fig.
2. The dynamics is very simple due to the fact that the right-

dx hand sides of Eqg3.9) and(3.10 are positive-definite and

E:—ZK[ V3&+ n(1-x)]. hence» and ¢ are always monotonically increasing func-

(3.1 tions. The curved upper boundaky=1— ¢* denotes the in-
variant setN=0 and therefore corresponds to Fig. 1.

We note that the invariant s&=0 corresponds toc=1
— &2, in which case the above system of ODEs reduces to the IV. ANALYSIS FOR POSITIVE CENTRAL
two-dimensional syster(8.5),(3.6). CHARGE DEFICIT

The equilibrium points of this system of ODEs all lie on
one of the two lines of non-isolated equilibrium poirfts
one-dimensional equilibrium sets

In the case where the central charge deficit is positive, the
variable/2—2A is no longer positive-definite and therefore
cannot be employed to normalize the system. In view of this,

L.:p5=1k=0, (3.12  Wwe choose the normalization
. . . . 2
where ¢ is arbitrary. The corresponding eigenvalues aye [ a2 E !
=—2m, and \,=—2(\3&+ 7,), and hence these equilib- e=|3n"+5p+N+2A] . (4.

rium sets are normally hyperbolithroughout, we shall re-
frain from giving the corresponding eigenvectors expligitly The generalized Friedmann constraint equaiipri® now
The third eigenvalue is zero since this is a set of equilibriumtakes the simple form
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o2 and the third eigenvalue is zero sin¢és an equilibrium set.
—=1 (4.2  Therefore, onV the equilibrium points are saddles far
€ e[—1,—1/J/3) and local sinks forue (—1/y/3,1]. The

phase portrait is given in Fig. 3.

It is also instructive to consider the dynamics on the
boundary corresponding =0, since the casbl=0 is of
physical interest in its own right as a four-dimensional
model. In this case the ODEs reduce to the two-dimensional

and may be employed to eliminate Since by definitione
=0, specifying one of the rootg/e=*1 corresponds to
choosing the sign ofy. However, it follows from the defini-
tion in Eq.(2.19 that changing the sign af is related to a
time reversal of the dynamics. In what follows, we shall

) X , system
consider the cas@/e=+1; the case)/e=—1 is qualita-
tively similar.
Introducing the new variables du yn
’ FRonias ﬁ(l—uz) (4.19)
\J3h p N
pu=—, v=——7, A\=—; 4.3
€ 26 €
dV— 2 1+ ! 4.1
and a new dynamical variable aT M’ \/§’u (4.12
d 1 d _ . . : .
= T qt (4.4 The equilibrium points and their corresponding eigenvalues
3e are
transforms Eqs(2.14—(2.17) to the three-dimensional au- 1
tonomous system C: p=v=0; kl:ﬁ’ A,=0 4.13
du 7
——==v+ —=[1-pu?=\] (4.5
daT
V3 _ ) 2 1
| . S wu=-1, v=0; Al:—ﬁ, Ap=2 1—ﬁ (4.14
14
e — 2
aT 2v ,L,L+\/§()\+IU, ) (4.6
2
N A u=1v=0; )\l:_ﬁ’ Np=—2 1+ﬁ . (419
——=—=A(1-u?-\). (4.7)
dT 3

Point C is a non-hyperbolic equilibrium point; however, by
The phase space variables are bounded by the conditionsdhanging to polar coordinates we find thatis a repeller
<{p?v,\}=<1 and also satisfy.>+ v+\=<1. The setsv  ith an invariant rayd=tan (- 3). The saddi&S and the
=0 and\ =0 are invariant sets correspondingde-0 and  attractorA lie on the lineV. The phase portrait is given in
B=0, respectively. In additionu?+ v+\=1 is an invariant ~ Fig. 4.
set corresponding td =0. We note that the right-hand side  This concludes the analysis of the phase portraits for the
of Eq.(4.7) is positive-definite and this simplifies the dynam- FRW string cosmologies containing non-trivial NS-NS
ics considerably. fields.

The equilibrium points of the systeid.5—(4.7) consist

of the isolated equilibrium point
V. DISCUSSION

Cu=r=r=0 (4.8 The phase portraits have a number of interesting features.
In Fig. 1 the modulus field is frozen and the universe con-
tracts from a singular initial state. The orbits in the vicinity
of the equilibrium pointR are asymptotic to theo=p_
dilaton—vacuum solutiori2.7). The axion is negligible and
. . . the kinetic energy of the dilaton dominates the energy-
The eigenvalues assomated_ \_N'm are _)‘1:1/\/5'_ 7‘_2 momentum tensor. As the collapse proceeds, however, the
=2//3 and\3=0. Although this isolated singular poitis  oion hecomes dynamically more important and eventually
non—hyperbollg, a simple analy§|s shows that it is a globaj,j,ces a bounce. In the case of vanishing Egs. (2.10
source. The eigenvalues associated Witare imply that the future attractor would correspond to the
=p. dilaton-vacuum solution. However, the combined ef-
A= 2 4.10 fect of the axion and central charge is to cause the universe

V3 to evolve towards the equilibrium poif wherea— +, in

and the line of non-isolated equilibrium points

V:v=0, A=1—pu? (u arbitrary). (4.9

)\1: -2
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1)

FIG. 3. The phase portrait of the systdh5—(4.7) corresponding to the ten-dimensional NS-NS model with positive central charge
deficit (A>0). The rooty/e=+1 of Eq.(4.2) has been chosen. Note thatlenotes a line of non-isolated equilibrium points. See captions
to Figs. 1 and 2.

a finite time. This behavior differs from that found when no form of the three-space. If the spatial topology of the uni-
axion field is present, because in this latter case there is ngerse is that of an isotropic three-torus, the axion field can be
bounce[11,17. formally interpreted as a membrane wrapped around this
This behavior can be understood by viewing the axiontorus[21]. As the universe collapses, the membrane resists
field as a membrang21]. Since this field is constant on the peing squashed into a singular point and this forces the uni-
surfaces of the homogeneity, the field strength of the twoyerse to bounce into an expansionary phase. The cosmologi-
form potential must be directly proportional to the volume ca| constant then dominates the axion field as the latter's
energy density decreases.
The inclusion of a modulus field leads to a line of sources
and sinks for the orbitésee Fig. 2 The axion field is dy-
T namically negligible in the neighborhood of the equilibrium
points. Moreover, a bouncing cosmology is no longer inevi-
table and there exist solutions that expand to infinity in a
finite time. The solutions are asymptotic to the dilaton-
moduli-vacuum solutions(2.9) near the linesL.. The
boundary points¢?=1/3 on these lines correspond to the
limiting cases wherer?= 2. These represent the isotropic,
ten-dimensional cosmologya=3) and its dual solution
(a=—pB). In the latter solution, the ten-dimensional dilaton
field, b=®+ 6, is constant.
R In Figs. 3 and 4, the isolated equilibrium poi@tcorre-
A sponds to the “linear dilaton vacuum” solutiof2.13
[11,18. When the modulus is frozen, all trajectories evolve
FIG. 4. Phase portrait of the syste11),(4.12) corresponding away fromC towards the poinf and approach the superin-
to the four-dimensional NS-NS model with positive central chargeflationaryp=p_ dilaton-vacuum solutiori2.7) defined over
deficit (A>0). The rooty/e=+1 of Eq. (4.2 has been chosen. t<0. Some of the orbits evolving away fro@ represent
See caption to Fig. 1. contracting cosmologies and the effect of the axion is to

<

=~
c
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reverse the collapse in all these cases. For the rolling modiscale factor is a power-law function of cosmic tifreee, for
lus solution(Fig. 3), the orbits tend to the dilaton-moduli- example, Eq(2.8)] [24]. This result can be proved in gen-
vacuum solutions as they approach the attractthis sinks  eral. For example, all of the equilibrium points of the system
onV). As in the case of a negative central charge, the criticaPf ODEs(3.9—(3.11) necessarily hava= const(leading to

value u?=1/3 corresponds to the case wheré= ,32- The @ power-law solution or A=0, whence from the exact
other boundary ofV is the pointA representing the case dllator)—modull—axmn SOIU“Q” (2.10 we can see thgt as-
where the kinetic energy of the modulus field vanishes. Thé(mptOt'Ca"y. th_e scale factor IS powgr—law. This |mp_I|es that
qualitative behavior of models witi<0 is similar exact self-similar solutions play an important role in deter-
The results presented in this paper can be directly appIieEP'TIng thel as'ympttr(])tlc ;Jehaworr(])f string costmglogﬂég]l..t i
to the class of spatially flat and homogeneous Bianchi type | h conclusion, thereloré, we have présented a qualitative

models by reinterpreting the physical meaning of the modu-anaIySiS of the spatially fiat, FRW string cosmologies con-

lus field, B. The line element for the axisymmetric type | taining non-trivial dilaton, axion and modulus fields together
model ’is. given by ds?=—dt2+h,,(1)dxedx® (a.b with a central charge deficistringy cosmological constant
a )

—1,2,3), where the metric on the surfaces of homogeneity i%n all cases, variables were found that led to a compactifica-
defined byh,,=e?*diad — 2, 8.,4] [22]. The field equa- lon of the phase space and this allowed a complete stability

tions derived from actioril.1) for this background are for- analysis to be pe_rforme;d. Bo_th four- and ften-dlmen5|onal
mally identical to those presented in Sec. 23] In this models were studied by including the dynamics of the modu-

. . . lus field. The combined effects of the axion field and central
anisotropic model, however, the variablesand 8 now pa- h . o : :
: arge deficit on the qualitative behavior of the dilaton-
rametrize the averaged scale factor and the shear parame?er . : .
) ; . . . “moduli-vacuum solution$2.8) were determined. We found
of the universe, respectively. It would be interesting to in- 7 :
. hat such terms have a significant effect on the dynamics.
vestigate whether the above results can be employed to stuéy
the question of isotropization in string cosmologies. A.P.B. is supported by Dalhousie University, A.A.C. is
Finally, we observe that all of the exact solutions corre-supported by the Natural Sciences and Engineering Research
sponding to the equilibrium points of the governing autono-Council of CanaddNSERQ, and J.E.L. is supported by the
mous systems of ODEs are self-similar since in each case tHRoyal Society.
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