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A qualitative analysis is presented for a class of homogeneous cosmologies derived
from the string effective action when a cosmological constant is present in the
matter sector of the theory. Such a term has significant effects on the qualitative
dynamics. For example, models exist which undergo a series of oscillations be-
tween expanding and contracting phases due to the existence of a heteroclinic cycle
in the phase space. Particular analytical solutions corresponding to the equilibrium
points are also found. ©1999 American Institute of Physics.
@S0022-2488~99!00910-X#

I. INTRODUCTION

Very early universe cosmology provides one of the few environments where the predictio
fundamental theories of physics, and in particular string theories, can be investigated.
theory is the most promising candidate for a unified theory of the fundamental interactio
introduces significant modifications to the standard, hot big bang model based on conve
Einstein gravity and a study of string-inspired cosmologies is therefore important.

String theories predict the existence of a graviton,gmn , a scalar ‘‘dilaton’’ field,F, and an
antisymmetric two-form potential,Bmn , with a field strengthHmnl[] [mBnl] .1,2 In four dimen-
sions, the three-form field strength is dual to a one-form,¹ms, such thatHmnl[eFemnlk¹ks,
where emnlk is the covariantly constant four-form.3 The one-form may be interpreted as th
gradient of a scalar ‘‘axion’’ field. The string field equations can then be derived from
effective action,3

S5E d4xA2ge2FFR1~¹F!22
1

2
e2F~¹s!2G1SM , ~1!

whereSM represents the action for perfect fluid matter sources,R is the Ricci curvature of the
space–time andg[detgmn . The dilaton-graviton sector of action~1! may be interpreted as
Brans–Dicke theory, where the coupling parameter between the two fields takes the specifi
v521.4 The value of the dilaton field determines the effective value of Newton’s ‘‘consta
Geff}eF.

The general solutions to the field equations of action~1! are known analytically whenSM

50 for both the spatially flat and isotropic Friedmann–Robertson–Walker~FRW! universes and
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the anisotropic Bianchi type I models.5,6 The purpose of the present paper is to qualitativ
investigate the consequences of introducing a cosmological constant,LM , into the matter sector
of Eq. ~1!,

S5E d4xA2gH e2FFR1~¹F!22
1

2
e2F~¹s!2G2LMJ . ~2!

This term may be interpreted as a perfect fluid matter stress with an equation of statep52r. It
could be generated by a slowly moving scalar field, with a kinetic energy contribution domi
by a self-interaction potential,p'2V'2r. Analytical FRW solutions have not been found f
this model when the axion field is trivial andLM.0.7,8 Moreover, the combined effects of th
cosmological constant and axion field have not been considered previously.

We determine the general structure of the phase space of solutions for spatially flat FR
axisymmetric Bianchi type I cosmologies derived from action~2! for arbitraryLM . This comple-
ments the work of Refs. 9–13, where the qualitative effects of introducing a cosmologica
stant,LM}e2F, into the gravitational sector of Eq.~1! were determined.

The paper is organized as follows. In Sec. II, the cosmological field equations and sol
for a zero cosmological constant are presented. The qualitative behavior of the model
positive and negativeLM is determined in Secs. III and IV, respectively. The phase portraits
interpreted in Sec. V and we conclude with a discussion in Sec. VI.

II. COSMOLOGICAL FIELD EQUATIONS

The metric for the Bianchi type I model may be written in the form

ds252dt21habdxadxb, a,b51,2,3, ~3!

wherehab(t) is a function of cosmic timet only and represents the metric on the surfaces
homogeneity. The axisymmetric model may be parametrized byhab5e2a(t)(e2b(t))ab , wheree3a

denotes the effective spatial volume of the universe. The traceless, diagonal matribab

[diag@b,b,22b# determines the shear of the models and we refer tob as the shear parameter.14

The spatially flat, isotropic FRW model is recovered in the limit whereb50 and, in this case,ea

represents the scale factor of the universe.
Substituting the metric~3! into the action~2! and integrating over the spatial variables impli

that

S5E dt e3aH e2FF6ȧḞ26ȧ216ḃ22Ḟ21
1

2
e2Fṡ2G2LMJ , ~4!

where the comoving volume has been normalized to unity without loss of generality and
denotes differentiation with respect tot. The field equations derived from Eq.~4! are given by

ä5ȧẇ1ẇ223ȧ226ḃ22 3
2LMew13a, ~5!

ẅ53ȧ216ḃ21 1
2LMew13a, ~6!

s̈52~ ẇ16ȧ !ṡ, ~7!

b̈5ḃẇ, ~8!

where

w[F23a ~9!

defines the ‘‘shifted’’ dilaton field and the generalized Friedmann constraint takes the form
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3ȧ22ẇ216ḃ21 1
2ṡ

2e2w16a1LMew13a50. ~10!

Equations~5!–~10! may be simplified by introducing the new time coordinate

d

du
[e2~w13a!/2

d

dt
~11!

and employing the generalized Friedmann constraint Eq.~10! to eliminate the axion field. The
remaining field equations are then given by

a95w822 9
2a821 1

2a8w826b822 3
2LM , ~12!

w953a8216b822 1
2w822 3

2a8w81 1
2LM , ~13!

b95 1
2b8~w823a8!, ~14!

where a prime denotes differentiation with respect tou.
The general solution to Eqs.~5!–~10! is known when the cosmological constant vanishes.5 It

is given by

ea5ea
*U s

s*
U1/2FU s

s*
U r

1U s

s*
U2r G1/2

,

eF5
eF

*

2 FU s

s*
U r

1U s

s*
U2r G ,

s5s* 6e2F
* F us/s* u2r2us/s* ur

us/s* u2r1us/s* ur G ,
eb5eb

*U s

s*
Uq

, ~15!

wheres[* tdt8e2a(t8) is conformal time,$a* ,s* ,F* ,s* ,b* % are arbitrary constants, and$r ,q%
satisfy the constraint equationr 5(3212q2)1/2.

The solutions to Eqs.~5!–~10! for a trivial axion field and zero cosmological constant hav
power-law form,

ea5ea
* utu6h

* ,

eF5eF
* utu63h

*
21,

eb5eb
* utu6A~123h

*
2

!/6, ~16!

whereh* is a constant such thatuh* u<1/). Solution~15! asymptotes to these power-law mode
at early and late times and the axion field is therefore dynamically negligible in these limits. W
an axion field it present, as in Eq.~15!, the universe undergoes a smooth transition between
two power-law solutions~16! and exhibits a bounce whens's* . In the isotropic limit, h

*
2

51/3, and the time-reversal of theea}utu21/) solution is inflationary. It corresponds to the preb
bang cosmology, where the inflationary expansion is driven by the kinetic energy of the d
field.15

In the next section we determine the phase portraits for the generalized model with a
trivial axion field andLM.0. The effect of the cosmological constant on the solutions~15! can
then be established.
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III. POSITIVE COSMOLOGICAL CONSTANT

WhenLM.0, we can rewrite Eqs.~12!–~14! using new variables defined by

h[a8, c[w8, N[b8. ~17!

Equation~10! then implies that

c2>3h216N21LM>0, ~18!

and consequently we may normalize withc. We therefore define

x[
)h

c
, ~19!

y[
6N2

c2 , ~20!

z[
LM

c2 , ~21!

d

dQ
[

1

c

d

du
, ~22!

and assume thatc.0. ~The casec,0 is related to a time-reversal of the system and the qu
tative behavior is similar.! The three-dimensional system~12!–~14! is therefore given by

dx

dQ
5~x1) !@12x22y2z#1

1

2
z@x2)#, ~23!

dy

dQ
52yH @12x22y2z#1

1

2
zJ , ~24!

dz

dQ
52zH @12x22y2z#2

1

2
~12z2)x!J . ~25!

It follows from definitions~19!–~21! that the phase space is bounded with 0<$x2,y,z%<1
subject to the constraint 12x22y2z>0. The invariant set 12x22y2z50 corresponds to a zer
axion field. The dynamics of the system~23!–~25! is determined primarily by the dynamics in th
invariant setsy50 andz50. These correspond to a zero shear parameter and a zero cosmo
constant, respectively. The dynamics is also determined by the fact that the right-hand side
~24! is positive-definite so thaty is a monotonically increasing function. This guarantees that th
are no closed or recurrent orbits in the three-dimensional phase space.

A. Isotropic model for LM>0

The isotropic FRW cosmology corresponds to the invariant sety50, where the shear param
eter is trivial. The system~23!–~25! reduces to the following plane system in this case:

dx

dQ
5~x1) !@12x22z#1

1

2
z@x2)#, ~26!

dz

dQ
52zH @12x22z#2

1

2
~12z2)x!J . ~27!
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The equilibrium points and their associated eigenvalues are given by

S1 : x521, z50; l152~)21!, l252~11) !, ~28!

S2 : x51, z50; l1522~)11!, l25~)21!, ~29!

F: x52
1

3)
, z5

16

27
; l1,25

1

3
6

i

9
A231. ~30!

The pointsS1 andS2 are saddles andF is a repelling focus. The phase portrait is given in Fig.
In the invariant set 12x22z50, corresponding to the case of a zero axion field, Eqs.~26! and

~27! reduce to the single ordinary differential equation,

dx

dQ
5

1

2
~12x2!~x2) !, ~31!

which can be integrated to yield an exact solution in terms ofU-time.

B. Anisotropic model for LM>0

In the full system~23!–~25!, corresponding to the anisotropic model with a nontrivial sh
parameter, there exists the isolated equilibrium point~and their associated eigenvalues!

F: x52
1

3)
, y50, z5

16

27

~l1 ,l2 ,l3!5S 1

3
1

i

9
A231,

1

3
2

i

9
A231,

4

3D , ~32!

FIG. 1. Phase portrait of the system~26!–~27!, corresponding to the isotropic FRW model withLM.0. Equilibrium points
are denoted by dots and the labels in all figures correspond to those equilibrium points~and hence the exact solutions the
represent! discussed in the text. We shall adopt the convention throughout that large black dots represent sourc~i.e.,
repellors!, large gray-filled dots represent sinks~i.e., attractors!, and small black dots represent saddles. Arrows on
trajectories have been suppressed since the direction of increasing time is clear using this notation. Note that in th
space orbits are future asymptotic to a heteroclinic cycle.
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W: y512x2, z50 ~x arbitrary!

~l1 ,l2 ,l3!5S 22)Fx1
1

)
G ,)Fx2

1

)
G ,0D . ~33!

Hence, F is a global source. The setW lies in the invariant setz50 on the boundary
y512x2. Points onW with xP(21/),1/)) are local sinks, while the remaining points a
saddles in the full three-dimensional phase space$in the invariant setz50 equilibrium points with
xP@21,21/)) are repelling and those withxP(21/),1# are attracting%. The phase portrait for
this system is given in Fig. 2 and Table I lists each equilibrium set and its stability.

We note that there exists an exact, anisotropic solution of Eqs.~23!–~25!, where

x52
1

3)
5constant ~34!

FIG. 2. Phase portrait of the system~23!–~25! corresponding to the axisymmetric Bianchi type I cosmology w
LM.0. Note thatW denotes a line of nonisolated equilibrium points. The dashed line represents the exactx5constant
solution ~34!–~36!. See caption to Fig. 1 for notation. Gray lines represent typical trajectories found within the
dimensional invariant sets, and solid black lines are typical trajectories within the full three-dimensional phase sp

TABLE I. Equilibrium sets for anisotropic model withLM.0, and their
stability ~the equations where each sets is defined is also listed!.

Equilibrium point Stability

F: Eq. ~32! Repellor~source!
W: Eq. ~33! Attractor ~sink! for (21/)),x,(1/))

Saddle otherwise
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and

y52
13

8 S z2
16

27D . ~35!

This implies that

dz

dQ
5

9

4
zS z2

16

27D ~36!

and Eq.~36! can be integrated explicitly in terms ofU-time.
In the following section we determine the effects of a negative cosmological constant.

allows a direct comparison to be made with theLM.0 models considered above.

IV. NEGATIVE COSMOLOGICAL CONSTANT

In the case whereLM,0, the generalized Friedmann constraint Eq.~10! implies that

c22LM>3h216N2>0. ~37!

We may therefore normalize by employing the quantityAc22LM. Defining the new variables

u[
)h

Ac22LM

, ~38!

v[
c

Ac22LM

, ~39!

w[
6N2

c22LM
, ~40!

where 0<$u2,v2,w%<1, and the new time variable

d

dJ
5

1

Ac22LM

d

dQ
~41!

implies that Eqs.~12!–~14! become

du

dJ
5
)

2
~12u2!~12v2!1~12u22w!~)1uv !, ~42!

dv
dJ

52
1

2
~12v2!~122u222w1)uv !, ~43!

dw

dJ
5w@2v~12u22w!2)u~12v2!#. ~44!

The phase space is bounded by the setsv561 andw512u2, where the latter corresponds to
zero axion field. The dynamics is determined by the fact that the right-hand side of Eq.~42! is
positive definite so thatu is a monotonically increasing function.
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A. Isotropic model for LM<0

In the invariant setw50, corresponding to the isotropic FRW model (b50), the system
~42!–~44! reduces to the following two-dimensional system:

du

dJ
5

1

2
~12u2!~2uv1)@32v2# !, ~45!

dv
dJ

5
1

2
~12v2!~2u2212)uv !. ~46!

The linesu251 andv251 are invariant sets, containing four equilibrium pointsSu,v . These
points are all saddles and are located at the intersections of the lines. Their eigenvalues ar
by

S1,1: l15)21, l2522~)11!, ~47!

S21,1: l152~)21!, l252~)11!, ~48!

S1,21 : l1522~)21!, l25~)11!, ~49!

S21,21 : l152~)21!, l252~)11!. ~50!

The remaining two equilibrium points and their eigenvalues are

R: ~u2 ,v2!5S 21,2
1

)
D ; l15

1

)
, l25

10

)
, ~51!

A: ~u1 ,v1!5S 1,
1

)
D ; l152

1

)
, l252

10

)
. ~52!

Consequently,R is a source andA is a sink. Figure 3 depicts the phase plane of the sys
~45!–~46!.

FIG. 3. Phase portrait of the system~45!–~46! corresponding to the isotropic FRW model withLM,0. See caption to Fig.
1.
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B. Anisotropic model for LM<0

In the full system~42!–~44! with a nontrivial shear parameter, the equilibrium points and th
respective eigenvalues are

W6: v561, u21w51; ~l1 ,l2 ,l3!5S 0,)Fu7
1

)
G ,22)Fu6

1

)
G D , ~53!

R: v52
1

)
, u521, w50; ~l1 ,l2 ,l3!5

1

)
~1,2,10!, ~54!

A: v5
1

)
, u51, w50; ~l1 ,l2 ,l3!52

1

)
~1,2,10!. ~55!

The saddle pointsS61,21 in Sec. IV A are the endpoints to the lineW2. This line represents
early-time attracting solutions for21/),u,1/) and saddles otherwise. The saddle poi
S61,1 are the endpoints to the lineW1. This corresponds to late-time attracting solutions
21/),u,1/) and saddles otherwise. Hence, there are two early-time attractors given b
point R and the lineW2 for 21/),u,1/). There are also two late-time attractors correspo
ing to the pointA and the lineW1 for 21/),u,1/). Figure 4 depicts the three-dimension
phase space and Table II lists each equilibrium set and its stability.

This concludes the derivation of the phase portraits for the spatially flat and homoge
cosmologies derived from Eq.~2!. We proceed in the following section to discuss their propert

FIG. 4. Phase portrait of the system~42!–~44! corresponding to the axisymmetric Bianchi type I model withLM,0. Note
that W6 denote lines of nonisolated equilibrium points. See captions to Figs. 1 and 2.
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V. INTERPRETATION OF THE PHASE PORTRAITS

The dynamics of the isotropic cosmology described by the system~26!–~27! is of interest
from a mathematical point of view due to the existence of the quasiperiodic behavior. The
are future asymptotic to aheteroclinic cycle, consisting of the two saddle equilibrium pointsS1

andS2 and the single~boundary! orbits in the invariant setsz50 and 12x22z50 joining S1 and
S2 ~see Fig. 1!. The former set corresponds to the zeroLM solution @given by Eqs.~15! with q
50# and the latter to the solution with constant axion field@see Eq.~31!#; to our knowledge this
exact solution was not previously known. In a given ‘‘cycle,’’ an orbit spends a long time clo
S1 and then moves quickly toS2 shadowing the orbit in the invariant setz50. It is then again
quasistationary and remains close to the equilibrium pointS2 before quickly moving back toS1

shadowing the orbit in the invariant set 12x22z50. We stress that the motion isnot periodic,
and on each successive cycle a given orbit spends more and more time in the neighborhoo
equilibrium pointsS1 andS2 .

In Fig. 1, the exact solution corresponding to the equilibrium pointF is a power-law solution,

a5a* ~2t !1/3,

F5 lnS 16

3LM
D22 ln~2t !,

s5s* 6
A15LM

16
~2t !2,

ḃ50, ~56!

wheret is defined over the range2`,t,0 by a suitable choice of an integration constant. T
new solution represents a cosmology that collapses monotonically to zero volume att50. The
curvature and coupling are both singular at this point. The universe is initially in a weak cou
regime, sinceGeff →0 ast→2`, and the effective energy density of the axion field also vanis
in this limit.

All orbits in Fig. 1 begin atF. The cyclical nature of these orbits can be physically underst
by reinterpreting the axion field in terms of a membrane. The homogeneity of the axion
s5s(t), implies that the two-form potential,Bmn , must be independent of cosmic time, and th
in turn implies that its field strength must be proportional to the volume form of the three-s
If the topology of the spatial sections is given by a three-torus,S13S13S1, the behavior of the
axion field is dynamically equivalent to that of a membrane that has been wrapped aroun
torus.16 The collapse is resisted by this membrane and the universe undergoes a bounce.
volume increases, however, the influence of the membrane is diminished, because the
density of the axion is rapidly red-shifted away. Consequently, the cosmological constant be
important.

TABLE II. Equilibrium sets for anisotropic model withLM,0, and their
stability ~the equations where each set is defined is also listed!.

Equilibrium point Stability

W2: Eq. ~53! Repellor~source! for (21/)),u,(1/))
Saddle otherwise

W1: Eq. ~53! Attractor ~sink! for (21/)),u,(1/))
Saddle otherwise

R: Eq. ~54! Repellor~source!
A: Eq. ~55! Attractor ~sink!
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The subsequent effect of the cosmological constant can be determined by viewing Eq.~2! in
terms of a Brans–Dicke action, where the dilaton-graviton coupling parameter is give
v521.4 The Brans–Dicke FRW models containing only a cosmological constant in the m
sector have been discussed previously by Barrow and Maeda, but their solutions only ap
v.25/6.7,8 The behavior of the general solution forv,25/6 is different and can be establishe
by performing a conformal transformation to a frame where the dilaton field is minimally cou
to gravity. In such a frame the term containingLM may be viewed as an exponential, se
interaction potential for the dilaton, where the exponent is uniquely determined by the va
v.17 Whenv.25/6, the late-time attractor is a scaling solution, where the kinetic and pote
energies of the dilaton field redshift in direct proportion.18 For v,25/6, however, the potential is
so steep that the dilaton effectively becomes massless.19 Thus, the late-time attractor whe
v521 corresponds to the solution~16! whereh

*
2 51/3.

Further insight may be gained by defining new variables in the reduced action~4!,

x[4a2F,

g[F26a,

t̃ 5E dtew. ~57!

In the case whereḃ5ṡ50, Eq. ~4! reduces to

S5E d t̃F2
3

2 S dx

d t̃
D 2

1
1

2 S dg

d t̃
D 2

2LMe2gG . ~58!

The momentum conjugate to the variablex is constant, i.e.,dx/d t̃5C, and the field equation for
g is a Liouville equation,

d2g

d t̃2
5LMe2g. ~59!

The general solution to Eq.~59! satisfying the Hamiltonian constraint can be found. Wh
C.0, it can be shown thatg}A3C2 t̃ in the late-time limit. Since the Hubble parameter is giv
by

ȧ52
1

2
ewS C1

dg

d t̃
D , ~60!

the late-time attractor corresponds to thecollapsingsolution in Eq.~16!.
In effect, therefore, the cosmological constant resists the expansion and ultimately cau

universe to recollapse and asymptotically approach the saddle pointS1 . On the other hand, the
collapse causes the axion field to become relevant once more and a further bounce ensu
process is then repeated with the universe undergoing a series of bounces. The orbits
progressively closer towards the two saddles,S1,2, and spend increasingly more time near to the
points. This behavior is related to the fact that the kinetic energy of the shifted dilaton
increases monotonically with time, since Eq.~6! implies thatẅ.0.

When shear is included (yÞ0), F still represents theonly source in the system. The orbit
follow cyclical trajectories in the neighborhood of the invariant sety50 and they spiral outwards
monotonically, since Eq.~24! implies thatdy/dU.0. After a finite~but arbitrarily large! number
of cycles the kinetic energy associated with the shear parameter,b, begins to dominate the axio
and cosmological constant. The orbits then asymptote to the power-law solutions~16!. All orbits
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in the full three-dimensional phase space actually spiral outwards around the orbit represen
the dashed line in Fig. 2 which corresponds to the exact solutions~34!–~36! with x5constant. In
terms of cosmic time,t, this exact solution satisfies

LM2
16

27
c21

48

13
N250 ~61!

and

ȧ52
1

9
ẇ, ~62!

whence from Eqs.~5!–~10! we obtain

ẅ5ẇ21kw
2e2w, ~63!

wherekw is an integration constant. Defining

%[
e2w

kw
~64!

simplifies Eq.~63! to

%%̈521 ~65!

and Eq.~65! can be integrated exactly to obtainẇ.20 A second integration then yieldsw in terms
of the inverse error function, so that in principle we can obtain the scale factor as a funct
time, t, from Eq. ~62!.

This cyclical behavior does not arise ifLM,0 ~see Fig. 3!. The equilibrium pointsA andR
represent the power-law solutions,

a5
a*

A62t
,

F5F* 2 ln@6A22LMt#2,

b5b* ,

s5s* , ~66!

where the1 sign corresponds to the pointR and the2 sign to the pointA. Initially the universe
is collapsing and the axion field induces a bounce, but this field can not dominate the dyn
again once the volume of the universe has increased sufficiently.

Figure 4 depicts the axisymmetric Bianchi type I model whenLM,0. In this phase space, fo
21/),u,1/) the line W2 represents the positive branch of the solution~16! for h* P
(21/3,1/3). Likewise, for21/),u,1/) the lineW1 represents the ‘‘2’’ solution in Eq. ~16!
for h* P(21/3,1/3). The four saddle pointsSu,v correspond to the power-law solutions~16! with
h* 561/). From Fig. 4 we see that generically trajectories asymptote away from either th
W2 or the pointR and move towards the expanding power-law solutionsW1 or A. Hence, the
cosmological constant is important in determining both the early- and late-time dynamics. Su
is monotonically increasing@see~42!# we note that the occurrence of a bounce in these cos
logical models is a typical feature.
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VI. DISCUSSION

In this paper we have presented a qualitative analysis of spatially flat FRW and Bianch
I cosmologies containing nontrivial dilaton and axion fields with a cosmological constant i
matter sector of the theory. The action we considered reduces to the string effective action
the cosmological constant vanishes. A complete stability analysis was performed in all ca
finding variables that led to a compactification of the phase space. We found that a cosmo
constant has a significant effect on the dynamics of the string cosmologies~15!.

One of the more interesting mathematical features of the models we have considered
existence of quasi-periodic behavior. This occurs in the isotropic cosmologies, where the orb
future asymptotic to a heteroclinic cycle~see Fig. 1!. The solutions interpolate between the sadd
S1 andS2 corresponding to the power-law models~16! with uh* u51/). It would be interesting to
consider the implications of this behavior for the prebig bang inflationary scenario.15 We note that
the phase portrait depicted in Fig. 1 is similar to that of Fig. 1~e! in Ref. 21 that describes th
locally rotationally symmetric submanifold of the stationary Bianchi type I perfect fluid mode
general relativity, although in this latter case the independent variable is spacelike.

The general Bianchi cosmology, where the shear matrix is given by

bab5diag@b11)b2 ,b12)b2 ,22b1# ~67!

can be analyzed directly by defining the variableN in Eqs.~17! and~20! via N25(
i 56

Ni
2. Orbits

in the full phase space of Fig. 2 with nontrivial shear term~represented by the variabley! are
repelled from the sourceF. The variabley increases monotonically and the orbits spiral around
exact solution given by Eqs.~61!–~63!, as represented by the dashed line in Fig. 2.@See also Fig.
1~f! and the Appendix in Ref. 21.# This implies that solutions are asymptotic in the past to
solution given by Eq.~56!. At early times the orbits ‘‘shadow’’ the orbits in the invariant sety
50 and undertake cycles between the saddles~in three-dimensional phase space! on the equilib-
rium set W close to S1 and S2 . These saddles onW may be interpreted as Kasner-typ
solutions.21,22Note thaty50 atS1 andS2 , however, and there is no shear term in these cases.
orbits thus experience a finite number of cycles in which the solutions interpolate between
ent Kasner-type states. The orbits eventually asymptote towards a source on the lineW.

This is perhaps reminiscent of the mixmaster behavior that occurs in the Bianchi type VI
IX cosmologies.22,23 These are the most general models in the Bianchi class A of spatially ho
geneous universes.24 In these models, Taub orbits joining equilibrium points of the Kasner seK
lead to the existence of infinite heteroclinic sequences which approximate the past asym
behavior of generic orbits.~These heteroclinic sequences are defined by a map ofK onto itself.!
Mixmaster oscillations also occur in less general~i.e., lower-dimensional! Bianchi models with a
magnetic field25 or Yang–Mills fields.26 It is interesting to note in the string context that mixma
ter behavior also occurs in scalar-tensor theories of gravity in general and in the Brans–
theory in particular.27

This analogy is only suggestive. We note that if a nonzero central charge deficit is incl
the quasiperiodic behavior in the full~higher-dimensional! phase space does indeed persis28

Unlike the mixmaster oscillations, however, the orbits in Fig. 2 eventually spiral away froy
50, although there are orbits that experience a finite but arbitrarily large number of oscilla
However, it would be interesting to further explore any correspondence with possible mixm
behavior, particularly by including additional anisotropic or matter degrees of freedom.

Some of the dynamics discussed in this paper is also relevant to higher-dimensional c
logical models. Kaluza–Klein compactification of ten-dimensional supergravity theories2 onto an
isotropic six-torus of radiuseb introduces an additional modulus field into the effective fo
dimensional action~1!. Integration over the spatial variables for a spatially flat FRW model t
leads to an action that is formally identical to that of Eq.~4! when we specifyLM50. In this
sense, therefore, the action~4! can be recast into a higher-dimensional context, where the s
term b plays the role of the modulus field andLM is interpreted as a cosmological constant th
is introduced after compactification.
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More generally, type II supergravity theories contain Ramond–Ramond form-fields th
not couple directly to the dilaton field in the string frame.2 Under dimensional reduction, thes
fields give rise to terms in the effective action of the formQ2 exp(cb), where Q and c are
constants;29 i.e., Ramond–Ramond charges give rise to exponential potentials for the mo
field rather than a simple constant term such as that considered in this work. However, fro
analysis in Sec. III A, there will be string solutions containing Ramond–Ramond fields tha
ymptote towards solutions withb5constant~y50 in Fig. 2!, in which caseQ2 exp(cb) is effec-
tively constant. It might then be expected that the heteroclinic cycle that occurs in the invaria
y50 ~see Fig. 1! will play an important roˆle in describing the dynamics of these string cosmo
gies.
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