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A qualitative analysis is presented for a class of homogeneous cosmologies derived
from the string effective action when a cosmological constant is present in the
matter sector of the theory. Such a term has significant effects on the qualitative
dynamics. For example, models exist which undergo a series of oscillations be-
tween expanding and contracting phases due to the existence of a heteroclinic cycle
in the phase space. Particular analytical solutions corresponding to the equilibrium
points are also found. €999 American Institute of Physics.
[S0022-24889)00910-X

[. INTRODUCTION

Very early universe cosmology provides one of the few environments where the predictions of
fundamental theories of physics, and in particular string theories, can be investigated. String
theory is the most promising candidate for a unified theory of the fundamental interactions. It
introduces significant modifications to the standard, hot big bang model based on conventional
Einstein gravity and a study of string-inspired cosmologies is therefore important.

String theories predict the existence of a gravitgp,, a scalar “dilaton” field,®, and an
antisymmetric two-form potentiaB,,,, with a field strengtrH ,,,=d,B,); .12 In four dimen-
sions, the three-form field strength is dual to a one-fo¥ipg, such thatH* " =e® e+ <V o,
where €#"* is the covariantly constant four-forinThe one-form may be interpreted as the
gradient of a scalar “axion” field. The string field equations can then be derived from the
effective actior?

S=f d*x—ge ?

1
R+ (Vd)%— Eez‘l’(va)2 +Swu, (1)

where Sy, represents the action for perfect fluid matter souréess the Ricci curvature of the
space-time ang=detg,,. The dilaton-graviton sector of actiofl) may be interpreted as a
Brans—Dicke theory, where the coupling parameter between the two fields takes the specific value
w=—12 The value of the dilaton field determines the effective value of Newton’s “constant,”
Geﬁoceq’.

The general solutions to the field equations of actibnare known analytically whei$y,
=0 for both the spatially flat and isotropic Friedmann—Robertson—Wa&Ke¥V) universes and
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the anisotropic Bianchi type | model$. The purpose of the present paper is to qualitatively
investigate the consequences of introducing a cosmological condtgntjnto the matter sector
of Eq. (1),

S=J d“x\/—_g[ e ®

1
R+(VD)2- 5 e*(Vo)?

_AM]- )

This term may be interpreted as a perfect fluid matter stress with an equation gf statp. It

could be generated by a slowly moving scalar field, with a kinetic energy contribution dominated
by a self-interaction potentiah~ —V~ — p. Analytical FRW solutions have not been found for
this model when the axion field is trivial antly,>0."® Moreover, the combined effects of the
cosmological constant and axion field have not been considered previously.

We determine the general structure of the phase space of solutions for spatially flat FRW and
axisymmetric Bianchi type | cosmologies derived from acti@nfor arbitrary A, . This comple-
ments the work of Refs. 9-13, where the qualitative effects of introducing a cosmological con-
stant,A>e~®, into the gravitational sector of E¢l) were determined.

The paper is organized as follows. In Sec. Il, the cosmological field equations and solutions
for a zero cosmological constant are presented. The qualitative behavior of the models with
positive and negative y, is determined in Secs. Il and 1V, respectively. The phase portraits are
interpreted in Sec. V and we conclude with a discussion in Sec. VI.

IIl. COSMOLOGICAL FIELD EQUATIONS

The metric for the Bianchi type | model may be written in the form
ds?=—dt?+ h,,dx3dx?, a,b=1,2,3, (3)

where h,(t) is a function of cosmic time only and represents the metric on the surfaces of
homogeneity. The axisymmetric model may be parametrizeld,py: e2*(V(e?#V),,, wheree3®
denotes the effective spatial volume of the universe. The traceless, diagonal rAggrix
=diad 8,8,— 23] determines the shear of the models and we refe &s the shear parametér.
The spatially flat, isotropic FRW model is recovered in the limit where0 and, in this casee®
represents the scale factor of the universe.

Substituting the metri€3) into the action(2) and integrating over the spatial variables implies

that
S= f dt e?’“(eq’

where the comoving volume has been normalized to unity without loss of generality and a dot
denotes differentiation with respect toThe field equations derived from E@t) are given by

. . . 1
6d<1>—6d2+6/5’2—<l>2+§e2‘1’62

_AM]! (4)

=ap+ p?—3a2—682— 3N\ ev "3 ©
$=3a°+6B%+3A e 3, ©)
o=—(pt6a)o, @
B=Be, ®
where
p=0=3a ©

defines the “shifted” dilaton field and the generalized Friedmann constraint takes the form
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32— PP+ 637+ bireet0u A e tRa=, (10

Equations(5)—(10) may be simplified by introducing the new time coordinate

d d
@Ee_(‘”s‘”/za (12)

and employing the generalized Friedmann constraint(E@). to eliminate the axion field. The
remaining field equations are then given by

a”=¢>’2—§a’2+%a’cp’—Gﬁ'z_gAM1 (12)
¢"=3a'?+6B'2— 30"~ 3a’ o'+ Ay, (13
B'=3B'(¢'~3a"), (14

where a prime denotes differentiation with respect.to
The general solution to Eq&5)—(10) is known when the cosmological constant vanishis.
is given by

1/2] r —-rj12

s s s
et=e™|—| ||| +|— ,
S* S* S*
(] r -r
e[| s s
e?= — +|= |,
2 ||s, Ss
o IR e CE
* Is/s, | "+|sl/s,|" |’
q
ef=efx|— (15
*

wheres= ['dt’e”*(") is conformal time{ e, ,S, , P, ,0, ,B,} are arbitrary constants, afid,q}
satisfy the constraint equationr= (3— 12922

The solutions to Eq95)—(10) for a trivial axion field and zero cosmological constant have a
power-law form,

ea:ea*|t|ih*,

e®=e®x || =31,

eﬁ:eﬁ*|t|¢\/(1—3hi)/ey (16)

whereh, is a constant such thit, |<1/v3. Solution(15) asymptotes to these power-law models
at early and late times and the axion field is therefore dynamically negligible in these limits. When
an axion field it present, as in E¢L5), the universe undergoes a smooth transition between the
two power-law solutiong16) and exhibits a bounce whesrs, . In the isotropic limit, h2
=1/3, and the time-reversal of ﬂwoc|t|*1"/3 solution is inflationary. It corresponds to the prebig
bangﬁcosmology, where the inflationary expansion is driven by the kinetic energy of the dilaton
field.

In the next section we determine the phase portraits for the generalized model with a non-
trivial axion field andA ,>0. The effect of the cosmological constant on the solutidis can
then be established.



J. Math. Phys., Vol. 40, No. 10, October 1999 Qualitative analysis of early universe cosmologies 5095

Ill. POSITIVE COSMOLOGICAL CONSTANT
WhenA,,>0, we can rewrite Eq912)—(14) using new variables defined by
h=a', ¢y=¢’', N=pg'. 17
Equation(10) then implies that
¥?=3h?+6N2+A,,=0, (19

and consequently we may normalize withWe therefore define

_vh 19
X= lﬂ s
_6N? 20
y_ dlz I ( )
A
7= w—“ﬁ (21)
d _1d
46~ 3 do’ @2

and assume that>0. (The casey<0 is related to a time-reversal of the system and the quali-
tative behavior is similay.The three-dimensional systeth2)—(14) is therefore given by

dx A ) 1 i
%—(x+ 3)[1—x —y—z]+§z[x— 3], (23
dy B ) 1
%—Zy[[l—x -y—z]+ EZ , (24
dz B ) 1 A
%—22 [1—x —y—z]—z(l—z— 3X) (. (25

It follows from definitions(19)—(21) that the phase space is bounded wits {&2,y,z}<1
subject to the constraint-1x?>—y—z=0. The invariant set + x>—y—z=0 corresponds to a zero
axion field. The dynamics of the systd2B)—(25) is determined primarily by the dynamics in the
invariant setyy=0 andz=0. These correspond to a zero shear parameter and a zero cosmological
constant, respectively. The dynamics is also determined by the fact that the right-hand side of Eq.
(24) is positive-definite so thatis a monotonically increasing function. This guarantees that there
are no closed or recurrent orbits in the three-dimensional phase space.

A. Isotropic model for A ,>0
The isotropic FRW cosmology corresponds to the invarianysed, where the shear param-
eter is trivial. The systen23)—(25) reduces to the following plane system in this case:

dx B 3 ) 1 A
@—(H N[1—x —z]+§z[x— 3], (26)

92 i 1-x? L1-z-v3 2
go ~ 24 [1-x"—z]=5(1-z=V3x) . (27)
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FIG. 1. Phase portrait of the systd@6)—(27), corresponding to the isotropic FRW model with,>0. Equilibrium points

are denoted by dots and the labels in all figures correspond to those equilibrium(paihtsence the exact solutions they
representdiscussed in the text. We shall adopt the convention throughout that large black dots represent(seyrces
repellorg, large gray-filled dots represent sinkise., attractors and small black dots represent saddles. Arrows on the
trajectories have been suppressed since the direction of increasing time is clear using this notation. Note that in this phase
space orbits are future asymptotic to a heteroclinic cycle.

The equilibrium points and their associated eigenvalues are given by

Siix=—1, z=0; \;=2(v3-1), A= —(1+V3), (28)

S,ix=1, z=0; \y=-2(V3+1), \p=(V3—-1), (29
1 16 1

X=- o2 775y N2=3+g 231 (30

The pointsS; andS, are saddles anf is a repelling focus. The phase portrait is given in Fig. 1.
In the invariant set & x>—z=0, corresponding to the case of a zero axion field, E2f).and
(27) reduce to the single ordinary differential equation,

dx 1

d—®=§(1—x2)(x—\/§), (3D

which can be integrated to yield an exact solution in termé&dime.

B. Anisotropic model for A ;>0

In the full system(23)—(25), corresponding to the anisotropic model with a nontrivial shear
parameter, there exists the isolated equilibrium p@anid their associated eigenvalues

1 16

X=———, y=0, z=
s ) 27

1 i 1 i 4
(N Ao N3)= §+§\/231,§—§\/231,§ , (32



J. Math. Phys., Vol. 40, No. 10, October 1999 Qualitative analysis of early universe cosmologies 5097

Z

FIG. 2. Phase portrait of the syste(@3)—(25) corresponding to the axisymmetric Bianchi type | cosmology with
Ap>0. Note thatW denotes a line of nonisolated equilibrium points. The dashed line represents thexexartstant
solution (34)—(36). See caption to Fig. 1 for notation. Gray lines represent typical trajectories found within the two-
dimensional invariant sets, and solid black lines are typical trajectories within the full three-dimensional phase space.

W: y=1-x2, z=0 (x arbitrary

V3| x——

V3

,o) . (33

1
(A1,N2,\3) ( 2V3| x+ A
Hence, F is a global source. The sel lies in the invariant sez=0 on the boundary
y=1—x2. Points onW with xe (—1A#3,1/3) are local sinks, while the remaining points are
saddles in the full three-dimensional phase sgacehe invariant sez=0 equilibrium points with
xe[—1,—1W3) are repelling and those withe (— 1#/3,1] are attracting The phase portrait for
this system is given in Fig. 2 and Table | lists each equilibrium set and its stability.

We note that there exists an exact, anisotropic solution of @8-—(25), where

1
X=— —— =constant (34

TABLE |. Equilibrium sets for anisotropic model witA,>0, and their
stability (the equations where each sets is defined is also Jisted

Equilibrium point Stability
F: Eq. (32 Repellor(source
W: Eq. (33 Attractor (sink) for (—1W3)<x<(1W3)

Saddle otherwise
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and
13 16 35
y=—"% |25 (35
This implies that
dz 9 16 36
do24% 2 (36

and Eq.(36) can be integrated explicitly in terms 6f-time.
In the following section we determine the effects of a negative cosmological constant. This
allows a direct comparison to be made with thg >0 models considered above.

IV. NEGATIVE COSMOLOGICAL CONSTANT

In the case wherd ,<0, the generalized Friedmann constraint Ef)) implies that
2 — Ay=3h%+6N2=0. (37

We may therefore normalize by employing the quantfgy?— A,,. Defining the new variables

v3h
u= lﬂ\/?/&’ (39
—im
V= z//\/L—Z—A’ (39
—iAMm
6N?
me, (40)
where 0<{u?,v3,w}=<1, and the new time variable
d 1 d 41
9=~ J7—hr, 40 4D
implies that Eqs(12)—(14) become
du v3 5 5 )
d—:=7(1—u Y(1—-v)+(1—u—w)(V3+uv), (42
dv 1
== z(l—vz)(1—2u2—2W+1/§uv), (43
dW 2 2
d—:=W[2v(1—u —w)—v3u(l—v9)]. (44)

The phase space is bounded by the sets+ 1 andw=1—u?, where the latter corresponds to a
zero axion field. The dynamics is determined by the fact that the right-hand side 64&ds
positive definite so thati is a monotonically increasing function.
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FIG. 3. Phase portrait of the syste#b)—(46) corresponding to the isotropic FRW model with, <0. See caption to Fig.
1.

A. Isotropic model for A <0

In the invariant setv=0, corresponding to the isotropic FRW modgd=0), the system
(42)—(44) reduces to the following two-dimensional system:

du 1 ) 2

5= = 5 (1= U2 2uv+v3[3-v?)), (49
dv 1

d_:zz(l—vz)(ZUZ—l—\/?uv). (46)

The linesu?=1 andv?=1 are invariant sets, containing four equilibrium poiBts, . These
points are all saddles and are located at the intersections of the lines. Their eigenvalues are given
by

S11: A =V3—1, \,=—2(V3+1), (47
S 11: A =2(v3—1), \p=—(V3+1), (48)
Sio1:A=—2(V3-1), \,=(v3+1), (49)
S 1 1A =—(V3-1), \,=2(v3+1). (50)

The remaining two equilibrium points and their eigenvalues are

R: ( ) ( 1 ! Y ! A 10 (51)
. U,,V, = -4, 1 :_1 :_1
N A MY

A ( =11 1) Y ! A 10 (52)
t(Up V)= 1= M=, A= —
L N A SR

ConsequentlyR is a source andh is a sink. Figure 3 depicts the phase plane of the system
(45)—(46).
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FIG. 4. Phase portrait of the systg#?)—(44) corresponding to the axisymmetric Bianchi type | model wit<0. Note
that W* denote lines of nonisolated equilibrium points. See captions to Figs. 1 and 2.

B. Anisotropic model for A ;<0

In the full system(42)—(44) with a nontrivial shear parameter, the equilibrium points and their
respective eigenvalues are

1 1
W*iv==+1, u’+w=1; ()\1,)\2,)\3)=<0,1/§ ux—|,—2v3jux— ) (53
3 V3
R ! 1 0; (Ag,Ap,A\3) 1(121() (54)
:V:__| u=— [} W= 1 [} [l =— 16y [l
A 1h2he)= T
A L 1 0; (Ag,Ap,A\3) 1(121() (55)
:V:_! u: L W: ; L L i ’ 7 "
‘/3 1:7N2,13 ‘/g

The saddle point$S.;_; in Sec. IVA are the endpoints to the lin&. This line represents
early-time attracting solutions for- 1/3<u<1W3 and saddles otherwise. The saddle points
S. 11 are the endpoints to the lin&/". This corresponds to late-time attracting solutions for
—1M3<u<1W3 and saddles otherwise. Hence, there are two early-time attractors given by the
pointR and the lineW~ for —1A3<u<1W3. There are also two late-time attractors correspond-
ing to the pointA and the linew" for —1/3<u<1A/3. Figure 4 depicts the three-dimensional
phase space and Table Il lists each equilibrium set and its stability.

This concludes the derivation of the phase portraits for the spatially flat and homogeneous
cosmologies derived from EQ). We proceed in the following section to discuss their properties.
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TABLE II. Equilibrium sets for anisotropic model with <0, and their
stability (the equations where each set is defined is also Jisted

Equilibrium point Stability
W™ Eq. (53 Repellor(source for (—1/3)<u<(1W3)
Saddle otherwise
W*': Eq. (53 Attractor (sink) for (—1A3)<u<(1AW3)
Saddle otherwise
R: Eq. (54) Repellor(source
A: Eqg. (55 Attractor (sink)

V. INTERPRETATION OF THE PHASE PORTRAITS

The dynamics of the isotropic cosmology described by the sy$88r-(27) is of interest
from a mathematical point of view due to the existence of the quasiperiodic behavior. The orbits
are future asymptotic to heteroclinic cycle consisting of the two saddle equilibrium poirs
andsS, and the singléboundary orbits in the invariant sets=0 and 1—x?—z=0 joining S; and
S, (see Fig. 1L The former set corresponds to the zérf solution[given by Eqgs.(15) with q
=0] and the latter to the solution with constant axion fidde Eq(31)]; to our knowledge this
exact solution was not previously known. In a given “cycle,” an orbit spends a long time close to
S; and then moves quickly t8, shadowing the orbit in the invariant se+0. It is then again
quasistationary and remains close to the equilibrium p8jnibefore quickly moving back t&;
shadowing the orbit in the invariant set-k?—z=0. We stress that the motion i®t periodic,
and on each successive cycle a given orbit spends more and more time in the neighborhood of the
equilibrium pointsS; andS,.

In Fig. 1, the exact solution corresponding to the equilibrium pbBiig a power-law solution,

a=a, (-1
B 16 )
d=In m —2In(—t),
A
U:U*i\/l—fe M (—1)?,
B=0, (56)

wheret is defined over the range «<t<0 by a suitable choice of an integration constant. This
new solution represents a cosmology that collapses monotonically to zero volure® af he
curvature and coupling are both singular at this point. The universe is initially in a weak coupling
regime, sinces 4 —0 ast— —o0, and the effective energy density of the axion field also vanishes
in this limit.

All orbits in Fig. 1 begin aF. The cyclical nature of these orbits can be physically understood
by reinterpreting the axion field in terms of a membrane. The homogeneity of the axion field,
o=o(t), implies that the two-form potentiag,,, , must be independent of cosmic time, and this
in turn implies that its field strength must be proportional to the volume form of the three-space.
If the topology of the spatial sections is given by a three-tofs; St x St, the behavior of the
axion field is dynamically equivalent to that of a membrane that has been wrapped around this
torus?® The collapse is resisted by this membrane and the universe undergoes a bounce. As the
volume increases, however, the influence of the membrane is diminished, because the energy
density of the axion is rapidly red-shifted away. Consequently, the cosmological constant becomes
important.
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The subsequent effect of the cosmological constant can be determined by viewi(®) Eq.
terms of a Brans—Dicke action, where the dilaton-graviton coupling parameter is given by
w=—1. The Brans—Dicke FRW models containing only a cosmological constant in the matter
sector have been discussed previously by Barrow and Maeda, but their solutions only apply for
w>—5/6.8 The behavior of the general solution fer< —5/6 is different and can be established
by performing a conformal transformation to a frame where the dilaton field is minimally coupled
to gravity. In such a frame the term containiidg, may be viewed as an exponential, self-
interaction potential for the dilaton, where the exponent is uniquely determined by the value of
. When o> —5/6, the late-time attractor is a scaling solution, where the kinetic and potential
energies of the dilaton field redshift in direct proporti§izor o< —5/6, however, the potential is
so steep that the dilaton effectively becomes massfe3$wus, the late-time attractor when
w=—1 corresponds to the solutidfi6) Wherehi =1/3.

Further insight may be gained by defining new variables in the reduced #djion

x=4a—?,
v=®—6a,

7= f dter. (57)

In the case wher@= =0, Eq.(4) reduces to

2
| 3/d 1/(d
2\ dt 2\ dt

The momentum conjugate to the varialylés constant, i.e.dX/d~t=C, and the field equation for
v is a Liouville equation,

2

—Aye 7. (58

d?y

T:AMe_ Y, (59)

dt?
The general solution to Eq59) satisfying the Hamiltonian constraint can be found. When
C>0, it can be shown thagec \'3C?t in the late-time limit. Since the Hubble parameter is given
by

a=——¢e*

2

C+ d—z) , (60)
dt

the late-time attractor corresponds to t@lapsingsolution in Eq.(16).

In effect, therefore, the cosmological constant resists the expansion and ultimately causes the
universe to recollapse and asymptotically approach the saddle $qirdn the other hand, the
collapse causes the axion field to become relevant once more and a further bounce ensues. The
process is then repeated with the universe undergoing a series of bounces. The orbits move
progressively closer towards the two saddis,, and spend increasingly more time near to these
points. This behavior is related to the fact that the kinetic energy of the shifted dilaton field
increases monotonically with time, since Ef) implies thaty>0.

When shear is includedy¢0), F still represents th@nly source in the system. The orbits
follow cyclical trajectories in the neighborhood of the invariantysetO and they spiral outwards
monotonically, since Eq24) implies thatdy/dO > 0. After a finite(but arbitrarily largé number
of cycles the kinetic energy associated with the shear parangtbegins to dominate the axion
and cosmological constant. The orbits then asymptote to the power-law sol(@&n#ll orbits
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in the full three-dimensional phase space actually spiral outwards around the orbit represented by
the dashed line in Fig. 2 which corresponds to the exact solu@®$s(36) with x=constant. In
terms of cosmic timet, this exact solution satisfies

AM—1—6¢2+ 4—8N2=o (61)
27 13
and
1
a=— 3 o, (62
whence from Eqgs(5)—(10) we obtain
b=+ kie?®, (63)
wherek,, is an integration constant. Defining
e ¢
e= (64)
simplifies Eq.(63) to
co=-1 (65)

and Eq.(65) can be integrated exactly to obtain?® A second integration then yieldsin terms
of the inverse error function, so that in principle we can obtain the scale factor as a function of
time, t, from Eqg. (62).
This cyclical behavior does not ariseAfy,<<0 (see Fig. 3. The equilibrium pointsA andR
represent the power-law solutions,
a*

Jxat’
O=0, —In[=-2Ayt]?
B=PB

a:

o=0,, (66)

where the+ sign corresponds to the poiRtand the— sign to the pointA. Initially the universe
is collapsing and the axion field induces a bounce, but this field can not dominate the dynamics
again once the volume of the universe has increased sufficiently.

Figure 4 depicts the axisymmetric Bianchi type | model whgp<0. In this phase space, for
—1NM3<u<1W3 the line W~ represents the positive branch of the solutid®) for h, e
(—1/3,1/3). Likewise, for- 1/3<u<1A3 the lineW™ represents the " solution in Eq. (16)
for h, e (—1/3,1/3). The four saddle poing,, correspond to the power-law solutioi) with
h, = *1/V3. From Fig. 4 we see that generically trajectories asymptote away from either the line
W~ or the pointR and move towards the expanding power-law soluti@¥is or A. Hence, the
cosmological constant is important in determining both the early- and late-time dynamicsuSince
is monotonically increasinfsee(42)] we note that the occurrence of a bounce in these cosmo-
logical models is a typical feature.
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VI. DISCUSSION

In this paper we have presented a qualitative analysis of spatially flat FRW and Bianchi type
I cosmologies containing nontrivial dilaton and axion fields with a cosmological constant in the
matter sector of the theory. The action we considered reduces to the string effective action when
the cosmological constant vanishes. A complete stability analysis was performed in all cases by
finding variables that led to a compactification of the phase space. We found that a cosmological
constant has a significant effect on the dynamics of the string cosmolddies

One of the more interesting mathematical features of the models we have considered is the
existence of quasi-periodic behavior. This occurs in the isotropic cosmologies, where the orbits are
future asymptotic to a heteroclinic cydieee Fig. 1L The solutions interpolate between the saddles
S; andS, corresponding to the power-law modéls$) with |h, |=1//3. It would be interesting to
consider the implications of this behavior for the prebig bang inflationary scefiaiie. note that
the phase portrait depicted in Fig. 1 is similar to that of Fi@) In Ref. 21 that describes the
locally rotationally symmetric submanifold of the stationary Bianchi type | perfect fluid models in
general relativity, although in this latter case the independent variable is spacelike.

The general Bianchi cosmology, where the shear matrix is given by

Bap=diad B+ +V3B_,B,—V3B_,—2B,] (67)

can be analyzed directly by defining the variahlin Eqgs.(17) and(20) via N2= 2 iNiz. Orbits

in the full phase space of Fig. 2 with nontrivial shear temepresented by the variablg are
repelled from the sourdé. The variabley increases monotonically and the orbits spiral around the
exact solution given by Eq$61)—(63), as represented by the dashed line in Fig.See also Fig.

1(f) and the Appendix in Ref. 21 This implies that solutions are asymptotic in the past to the
solution given by Eq(56). At early times the orbits “shadow” the orbits in the invariant set

=0 and undertake cycles between the sad@leshree-dimensional phase spaoca the equilib-

rium set W close t0S; and S,. These saddles oV may be interpreted as Kasner-type
solutions?!?2Note thaty=0 atS; andS,, however, and there is no shear term in these cases. The
orbits thus experience a finite number of cycles in which the solutions interpolate between differ-
ent Kasner-type states. The orbits eventually asymptote towards a source on the line

This is perhaps reminiscent of the mixmaster behavior that occurs in the Bianchi type VIl and
IX cosmologies>* These are the most general models in the Bianchi class A of spatially homo-
geneous universés.In these models, Taub orbits joining equilibrium points of the KasneKset
lead to the existence of infinite heteroclinic sequences which approximate the past asymptotic
behavior of generic orbit§These heteroclinic sequences are defined by a mépmfto itself)
Mixmaster oscillations also occur in less gendia., lower-dimensionalBianchi models with a
magnetic field or Yang—Mills fields?® It is interesting to note in the string context that mixmas-
ter behavior also occurs in scalar-tensor theories of gravity in general and in the Brans—Dicke
theory in particulaf’

This analogy is only suggestive. We note that if a nonzero central charge deficit is included,
the quasiperiodic behavior in the fulhigher-dimensionalphase space does indeed perdist.
Unlike the mixmaster oscillations, however, the orbits in Fig. 2 eventually spiral away yrom
=0, although there are orbits that experience a finite but arbitrarily large number of oscillations.
However, it would be interesting to further explore any correspondence with possible mixmaster
behavior, particularly by including additional anisotropic or matter degrees of freedom.

Some of the dynamics discussed in this paper is also relevant to higher-dimensional cosmo-
logical models. Kaluza—Klein compactification of ten-dimensional supergravity théorés an
isotropic six-torus of radiug® introduces an additional modulus field into the effective four-
dimensional actiorfl). Integration over the spatial variables for a spatially flat FRW model then
leads to an action that is formally identical to that of E4). when we specifyA,=0. In this
sense, therefore, the actigf) can be recast into a higher-dimensional context, where the shear
term B plays the role of the modulus field ard, is interpreted as a cosmological constant that
is introduced after compactification.
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More generally, type Il supergravity theories contain Ramond—Ramond form-fields that do
not couple directly to the dilaton field in the string frafelnder dimensional reduction, these
fields give rise to terms in the effective action of the fo@fexp(cB), whereQ and ¢ are
constant$® i.e., Ramond—Ramond charges give rise to exponential potentials for the modulus
field rather than a simple constant term such as that considered in this work. However, from the
analysis in Sec. Il A, there will be string solutions containing Ramond—Ramond fields that as-
ymptote towards solutions witf= constantly=0 in Fig. 2, in which caseQ? exp(cp) is effec-
tively constant. It might then be expected that the heteroclinic cycle that occurs in the invariant set
y=0 (see Fig. 1 will play an important rée in describing the dynamics of these string cosmolo-
gies.
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