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A complete global analysis of spatially flat, four-dimensional cosmologies derived from the type IIA string
and M-theory effective actions is presented. A non-trivial Ramond-Ramond sector is included. The governing
equations are written as a dynamical system. Asymptotically, the form fields are dynamically negligible, but
play a crucial role in determining the possible intermediate behavior of the solutions~i.e., the nature of the
equilibrium points!. The only past-attracting solution~source in the system! may be interpreted in the eleven-
dimensional setting in terms of flat space. This source is unstable to the introduction of spatial curvature.

PACS number~s!: 98.80.Hw, 04.50.1h, 11.25.Mj
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I. INTRODUCTION

There are five anomaly-free, perturbative superstr
theories@1#. It is now widely believed that these theorie
represent special points in the moduli space of a more
damental, non-perturbative theory known as M theory@2#.
~For a review see, e.g., Ref.@3#.! Moreover, another point o
this moduli space corresponds to eleven-dimensional su
gravity. This represents the low-energy limit of M theo
@2,4#.

The original formulation of M theory was given in term
of the strong coupling limit of the type IIA superstring. I
this limit, an extra compact dimension becomes appar
with a radiusR related to the string couplinggs by R}gs

2/3

@2#. The compactification of M theory on a circle,S1, then
leads to the type IIA superstring. In this framework, the
laton field of the ten-dimensional string theory is interpre
as a modulus field parametrizing the radius of the eleve
dimension.

This change of viewpoint reestablishes the importance
eleven-dimensional supergravity in cosmology and has in
esting consequences for the dynamics of the very early
verse. An investigation into the different cosmological mo
els that can arise in M theory is therefore important an
number of solutions to the effective action have recen
been found@5–8#.

The bosonic sector of eleven-dimensional supergra
consists of a graviton and an antisymmetric, three-form
tential @9#. The purpose of the present paper is to employ
theory of dynamical systems to determine the qualitative
havior of a wide class of four-dimensional cosmologies
rived from this supergravity theory. We compactify th
theory to four dimensions under the assumption that the
ometry of the universe is given by the produ
M43Y63S1, whereM4 is the four-dimensional spacetime
Y6 represents a six-dimensional, Ricci-flat internal space
S1 is a circle corresponding to the eleventh dimension.
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assume that the only non-trivial components of the fi
strength of the three-form potential are those on theM4
3S1 subspace.

The outline of the paper is as follows. In Sec. II we deri
an effective, four-dimensional action by employing the du
ity relationship in four dimensions between ap-form and a
(42p)-form. The field equations for the class of spatia
isotropic and homogeneous Friedmann-Robertson-Wa
~FRW! universes are derived in Sec. III and expressed a
compact autonomous system of ordinary differential eq
tions. All of the equilibrium points of the system and the
stability are determined in Sec. IV. A complete analysis
the flat cosmological models is presented in Sec. V toge
with a discussion and interpretation of the results. The
bustness of the models is addressed in Sec. VI where
number of generalizations~i.e. additional degrees of free
dom! are included; in particular curvature effects are cons
ered. We conclude with a discussion in Sec. VII.

II. FOUR-DIMENSIONAL EFFECTIVE ACTION

The bosonic sector of the effective supergravity action
the low-energy limit of M theory is given in component form
by1

1In this paper, the spacetime metric has signature (2,1,•••,1)
and variables in eleven dimensions are represented with a circ
flex accent. Upper case, Latin indices with circumflex accents t

values in the rangeÂ5(0,1, . . . ,10),upper case, Latin indices
without a circumflex accent vary fromA5(0,1, . . . ,9), lowercase
Greek indices spanm5(0,1,2,3) and lower case Latin indices re
resent spatial dimensions. A totally antisymmetricp-form is defined
by Ap5(1/p!)AA1 . . . Ap

dxA1`•••`dxAp and the corresponding
field strength is given by Fp115dAp5@1/(p
11)!#FA1 . . . Ap11

dxA1`•••`dxAp11. The coordinate of the elev
enth dimension is denoted byY. The eleven-dimensional Planc
mass is the only dimensional parameter in this theory@10# and units

are chosen such that 16pĜ51.
©2000 The American Physical Society04-1
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Ŝ5E d11xAuĝuF R̂2
1

48
F̂Â1Â2Â3Â4

F̂Â1Â2Â3Â4

2
1

124

ê Â1Â2Â3B̂1B̂2B̂3B̂4Ĉ1Ĉ2Ĉ3Ĉ4

Auĝu

3ÂÂ1Â2Â3
F̂B̂1B̂2B̂3B̂4

F̂Ĉ1Ĉ2Ĉ3Ĉ4G , ~1!

where R̂ is the Ricci curvature scalar of the eleve
dimensional manifold with metricĝmn , ĝ[detĝmn and
F̂Â1Â2Â3Â4

[] [ Â1
ÂÂ2Â3Â4] is the four-form field strength o

the antisymmetric three-form potentialÂÂ1Â2Â3
. The topo-

logical Chern-Simons term arises as a necessary co
quence of supersymmetry@9#.

In deriving a four-dimensional effective action from E
~1!, we first consider the Kaluza-Klein compactification on
circle,S1. This results in the effective action for the massle
type IIA superstring@2,11#. The three-form potentialÂÂB̂Ĉ
reduces to a three-form potentialAABC and a two-form po-
tential,BAB[AABY . If we ignore the one-form potential tha
arises from the dimensional reduction of the metric, the t
dimensional action is given by@11#

S5E d10xAugsuF e2F10S Rs1~¹F10!
22

1

12
HABCHABCD

2
1

48
FABCDFABCD2

1

384

eA1A2B1B2B3B4C1C2C3C4

Auĝu

3BA1A2
FB1B2B3B4

FC1C2C3C4G , ~2!

where HABC[3] [ABBC] and FABCD54] [AABCD] are the
field strengths of the potentialsBBC andABCD , respectively,
the ten-dimensional dilaton field,F10, is related to the radius
of the eleventh dimension,eg @2#:

g5
1

3
F10 ~3!

and we have performed a conformal transformation to
string frame:

gAB
(s) 5V2gAB , V2[eg. ~4!

The first line in Eq.~2! contains the massless excitatio
arising in the Neveu-Schwarz–Neveu-Schwarz~NS-NS! sec-
tor of the type IIA superstring and the second line is t
Ramond-Ramond~RR! sector of this theory@1#. In general,
the NS-NS fields couple directly to the dilaton field in th
string frame, but the RR fields do not.

We now consider the compactification of theory~2! to
four dimensions. The simplest compactification that can
considered is on an isotropic six-torus, where the only
04350
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namical degree of freedom is the modulus field paramet
ing the volume of the internal space. We therefore assu
that the string-frame metric~4! has the form

dss
25gmn

(s)dxmdxn1e2bd i j dxidxj , ~5!

whered i j ( i , j 51, . . . ,6) is thesix-dimensional Kronecker
delta andb represents the modulus field.

Moreover, we compactify the form fields in Eq.~2! by
assuming that the only non-trivial components that rem
after the compactification are those associated with the
ternal spacetimeM4. This implies, in particular, that the
Chern-Simons term is unimportant, since it is proportiona
F`F. The effective four-dimensional action is then given
the string frame by

S5E d4xAug4uFe2FS R1~¹F!226~¹b!2

2
1

12
HmnlHmnlD2

1

48
e6bFmnlkFmnlkG , ~6!

where

F[F1026b ~7!

is the four-dimensional dilaton field.
The field equations and Bianchi identities for the for

fields are

¹m~e2FHmnl!50 ~8!

] [mHnlk]50 ~9!

and

¹m~e6bFmnlk!50 ~10!

] [mFnlkr]50, ~11!

respectively. In four dimensions, ap-form is dual to a (4
2p)-form and Eqs.~8! and ~10! are solved by theAnsätze
@12,13#

Hmnl[eFemnlk¹ks ~12!

Fmnlk5Qe26bemnlk, ~13!

where emnlk is the covariantly constant four-form,s is a
scalar variable andQ is an arbitrary constant. Although Eq
~12! and ~13! solve the field equations~8! and ~10!, the Bi-
anchi identities~9! and~11! must also be satisfied. Equatio
~13! is trivially satisfied, since we are working in four dimen
sions and substituting Eq.~12! into Eq. ~9! implies that

¹m~eF¹ms!50. ~14!

Equation~14! may be interpreted as the field equation f
the pseudo-scalar axion field,s @12#. Moreover, substituting
Eqs.~12! and ~13! into the remaining field equations for th
graviton, dilaton and modulus fields implies that they may
derived from a dual effective action
4-2
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S5E d4xAug4uFe2FS R1~¹F!226~¹b!22
1

2
e2F~¹s!2D

2
1

2
Q2e26bG . ~15!

In the following section, we derive the cosmological fie
equations from the effective action~15!.

III. COSMOLOGICAL FIELD EQUATIONS

We denote the FRW metric onM4 by the line element
dss

252n2dt21e2adVk
2 , whereea represents the scale fac

tor of the universe,n is the lapse function anddV2 is the
three-metric on the surfaces of isotropy, with positive (k5
11), negative (k521) or zero (k50) curvature, respec
tively. Substituting thisAnsatzinto the effective action~6!,
integrating over the spatial variables and normalizing the
moving volume to unity, yields the reduced action

S5E dtFn21e2w~3ȧ22ẇ216kn2e22a16ḃ2!

1
1

2n
ew16aṡ22

n

2
Q2e26b13aG , ~16!

where a dot denotes differentiation with respect tot and

w[F23a ~17!

defines the ‘‘shifted’’ dilaton field@14#.
The corresponding field equations are

ä5ȧẇ1
1

2
r22k e22a2

1

4
Q2e26b1w13a, ~18a!

ẅ5
1

2 S 3ȧ21ẇ216ke22a16ḃ22
1

2
r D ,

~18b!

ṙ526ȧr, ~18c!

b̈5ḃẇ1
1

4
Q2e26b1w13a, ~18d!

053ȧ22ẇ216ḃ21
1

2
r26ke22a

1
1

2
Q2 e26b1w13a, ~18e!

where we specifyn51 and

r5e2w16aṡ2 ~19!

parametrizes the kinetic energy of the pseudo-scalar a
field.

Kaloper, Kogan and Olive have considered the equiva
compactification of the M-theory effective action~1! directly
in terms of eleven-dimensional variables whenM4 corre-
04350
-
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sponds to the spatially flat FRW spacetime@7#. In this case,
the only non-trivial components of the four-form fiel
strength that can exist entirely on the subspaceM43S1 are
F0mnp and FYmnp, wherem5(1,2,3), etc. The former rep
resent the non-trivial components of the RR four-form fie
strength in Eq.~15! and the latter are equivalent to those
the NS-NS three-form field strength. The scale factors of
universe in the string and M-theory interpretations are
lated by Eqs.~3! and ~4!. These relationships provide th
recipe that allows the type IIA string cosmologies to be
interpreted in terms of eleven-dimensional, M-theory mo
els. It can be verified by direct comparison that fork50,
Eqs. ~18a!–~18e! are formally equivalent to the field equa
tions derived in Ref.@7#. The advantage of employing th
string-frame variables in this work is that the first derivati
of the shifted dilaton field~17! is a dominant variable and
this greatly simplifies the analysis of the global dynamics

To proceed, we define a new time variable,h:

dh

dt
[e(26b1w13a)/2. ~20!

The system of equations~18a!–~18e! then becomes

a95
1

2
a8w813a8b82

9

2
~a8!21~w8!226~b8!2

14ke2(5a1w26b)2
3

4
Q2, ~21!

w953~a8!216~b8!21
1

4
Q22

1

2
~w8!213b8w82

3

2
a8w8,

~22!

b95
1

2
b8w813~b8!22

3

2
a8b81

1

4
Q2, ~23!

1

2
re2(w13a26b)5~w8!223~a8!226~b8!2

16ke2(5a1w26b)2
1

2
Q2, ~24!

where a prime denotes differentiation with respect toh and
the Hamiltonian constraint~18e! has been employed to
eliminate the axion field,r.

Since Q2 is semi-positive definite, it follows from Eq
~24! that w8 is a dominant variable in the spatially flat an
negatively curved models (k<0). In addition, it follows
from Eqs.~22! and~24! thatw8 is a monotone function. This
is important because it implies the global result thatw8 is
either monotonically increasing or decreasingthroughout
the evolution of the models.~The variablew8 plays an analo-
gous rôle to that of the expansion parameter in the spatia
homogeneous perfect fluid models of general relativity@16#.!

We therefore introduce the new dimensionless time v
able,t, according to
4-3



-

in

a

th
u
or
e
n-
es

ysis
ani-
he
tate
the
l

ur-

,

di-
g to

rec-
e

ed

by
case
k
. If
um
ter-

BILLYARD, COLEY, LIDSEY, AND NILSSON PHYSICAL REVIEW D 61 043504
dt

dh
5w8, ~25!

where we assume here thatw8.0. ~The casew8,0 is dis-
cussed in Sec. V.! We also define the following set of dimen
sionless variables:

x[
A3a8

w8
, y[

A6b8

w8
, z[

Q2

2~w8!2
,

u[2
6ke2(5a1w26b)

~w8!2
; V[

e2(w13a26b)r

2~w8!2
. ~26!

This leads to a decoupling of the equation forw8, which can
be written as

dw8

dt
5S 2

1

2
1

1

2
z2

A3

2
x1x21y21

A6

2
yDw8. ~27!

The remaining equations can then be written in the follow
dimensionless form:

dx

dt
5~12x22y22z!~x1A3!1

1

2
z~x2A3!2

2

A3
u,

~28a!

dy

dt
5~12x22y22z!y1

1

2
z~y1A6!, ~28b!

dz

dt
5@z212A6y1A3x12~12x22y22z!#z,

~28c!

du

dt
52

1

3
u@2A3x13~z12x212y2!#. ~28d!

The variableV is given by

V512x22y22z2u, ~29!

and satisfies the auxiliary equation

dV

dt
52@2y21z12x~x1A3!#V. ~30!

IV. STRUCTURE OF STATE SPACE AND LOCAL
ANALYSIS

In this section we present all of the equilibrium points th
arise in the system~28a!–~28d!. We are primarily interested
in the spatially flat models. However, we also consider
stability of these models to perturbations in the spatial c
vature. The local stability analysis we perform is valid f
both positive and negative spatial curvature, although we
plicitly consider thek<0 models since in this case the co
dition r>0 implies that all of the dimensionless variabl
are bounded. The physical state space is defined by
04350
g

t

e
r-

x-

0,$x2,y2,z,u%,1 ~31!

and a global analysis can therefore be undertaken.
We include the boundary of the state space in our anal

because the dynamics in the invariant boundary subm
folds is useful in determining the global properties of t
orbits in the physical phase space. The boundary of the s
space consists of a number of invariant submanifolds of
system. They are~i! models where the axion field is trivia
(V50), ~ii ! the spatially flat models (u50), and~iii ! mod-
els wherez50, corresponding to the case where the fo
form field strength,Fmnlk , is dynamically unimportant. The
system of equations also admits an invariant submanifoldK,
that is not part of the boundary of state space:

K: x1A2y1A350, u50. ~32!

The equilibrium points are:
Equilibrium set: The line L1

x21y251, z50, u50, V50,

l150, l2522~A3x11!, l35211A3x2A6y,

l4522S 1

A3
x11D ,

wherel i denote the eigenvalues. The zero eigenvalue in
cates that this is indeed an equilibrium set, correspondin
a circle of unit radius in the (x,y) plane. We refrain from
presenting the eigenvectors, but note that it is the eigendi
tion associated withl3 that points in a direction outside th
submanifoldz50, while the eigenvector ofl4 extends into
the u direction. The stability of these equilibria is discuss
in the following section.2

Equilibrium point: The source R

x52
5A3

19
, y52

A6

19
, z5

28

361
, u5

252

361
, V50,

l15
20

19
, l25

14

19
, l3,45

76 iA119

19
.

Equilibrium point: The saddle M

x52
1

A3
, y5z50, u5

2

3
, V50,

2For hyperbolic equilibrium points the stability is determined
the signs of the real parts of the associated eigenvalues; in the
of a source~past attractor! all are positive and in the case of a sin
~future attractor! all are negative. Otherwise, the point is a saddle
the real part of any of the eigenvalues of an isolated equilibri
point is zero, it is non-hyperbolic and the stability cannot be de
mined directly from the eigenvalues.
4-4
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l15l25
2

3
, l35

4

3
, l452

2

3
.

The saddle pointM corresponds to the Milne form of fla
space. This may be mapped onto the future light cone of
origin of Minkowski spacetime and in this sense may
interpreted as the string perturbative vacuum represente
terms of non-standard coordinates.

V. DYNAMICS OF THE SPATIALLY FLAT
COSMOLOGIES

A. Global analysis

In this section we consider the global dynamics of t
spatially flat cosmologies (k50, u50). For these models
the state space is three-dimensional and the orbits can th
fore be represented pictorially.

The only equilibrium points in the spatially flat models l
on the lineL1 and the eigenvalues are given in Sec. I
From these eigenvalues, it can be seen that this line is a
for x.21/A3 andA2y.x21/A3. The linesx521/A3 and
A2y5x21/A3 intersect on L1 at the point P:(x,y)
5(21/A3,2A2/3), at which all three eigenvalues are ze
Hence,P is a non-hyperbolic equilibrium point. All othe
points onL1 are saddles.

It can be shown that the pointP is a source in the three
dimensional phase space. It follows from Eqs.~28a! and
~28b! that

d

dt
~x1A2y1A3!5~x1A2y1A3!S 12x22y22

1

2
zD
~33!

for u50. This implies thatx1A2y1A3 is amonotonically
increasing function in the physical phase space. The te
(12x22y22 1

2 z) is positive-definite in the interior region
and can only be zero on the boundary, wherex21y251 and
z50. The term x1A2y1A3 is positive-definite in the
physical state space and can only vanish in the exten
phase space at the pointP. Indeed, the linex1A2y52A3 is
tangent to the unit circlex21y251 andz50 and actually
touches it at the pointP. We may conclude, therefore, tha
the non-hyperbolic equilibrium pointP is indeed a source fo
the three-dimensional system. We have verified this by a
ysing the equilibrium pointP using spherical polar coordi
nates and by numerical calculations.

The dynamics on the boundary of the state space is
important when interpreting the behavior of the orbits. T
boundary consists of the two invariant submanifoldsV50
andz50. TheV50 ~trivial axion field! submanifold can be
solved analytically in terms of the variables of the state sp
and the solution is given by

y52A61
~y01A6!~x2A3!

x02A3
, ~34!

where (x0 ,y0) represents the initial point of the orbit. Thu
orbits follow straight line paths in the (x,y) plane. Moreover,
04350
e
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since by definitionx,A3, this variable is a monotonically
decreasingfunction on this submanifold andy is amonotoni-
cally increasingfunction. The lineL1 is a source forx.
21/A3 andA2y,x21A3 and a sink otherwise.

The boundaryz50 describes models where the four-for
field strength is dynamically negligible. This submanifo
can also be solved exactly and the orbits follow the strai
line paths:

y5
y0~x1A3!

x01A3
, ~35!

where (x0 ,y0) again represents the initial point of the orb
In this case, the functionx is monotonicallyincreasingon
this submanifold. The lineL1 is a source forx,21/A3 and
a sink otherwise.

The time-reversed dynamics of thew8.0 models we
have considered thus far is equivalent to the dynamics of
case wherew8,0. This follows by redefining the time vari
able,t:

dt

dh
52w8, ~36!

so thath and t are both increasing or both decreasing
gether. If we define the other state variables as in Eq.~29!,
the variablesx andy for w8,0 are now the reflections of th
variablesx andy for w8.0, i.e.,x→2x andy→2y. With
the new time variable~36!, the evolution equations~28a!–
~28d! will have an ‘‘‘overall’’ change in sign, i.e.,dx/dt
→2dx/dt, etc. Thus, the equilibrium points are identical
both cases, but the eigenvalues have opposite signs. Co
quently, the dynamics of thew8,0 models is the time re-
versal of thew8.0 models, where contracting models fo
w8.0 are expanding models forw8,0, and vice versa.

B. Physical interpretation

The phase space for the spatially flat models is depicte
Figs. 1–4. Figures 1 and 2 correspond to the invariant s
manifoldsz50 andV50, respectively. FIgures 3 and 4 rep
resent views of two typical orbits in the full three
dimensional phase space.

The equilibrium setL1 represents solutions where th
form-fields are trivial and only the dilaton and moduli field
are dynamically important. These are known as the ‘‘dilato
moduli-vacuum’’ solutions and have an analytical for
given by

ea5ea
* utu6h

*

eF5eF
* utu63h

*
21

eb5eb
* utu6eA(123h

*
2 )/6, ~37!

where $a* ,F* ,b* ,h* % are constants, ande561. Note
that the ‘‘2 ’’ solutions in Eq.~37!, which are represented b
the lineL1, correspond tot,0 and, in the time-reverse cas
(ẇ,0), the ‘‘1’’ solutions of Eq.~37! correspond tot.0.
4-5
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Let us first consider the dynamics in the invariant su
manifold z50, where the NS-NS axion field is non-trivia
and the RR four-form field strength vanishes~Fig. 1!. These
trajectories represent the ‘‘dilaton-moduli-axion’’ solution
discussed in Ref.@17#. The trajectory alongy50 corre-
sponds to the solution where the internal dimensions
static. In this case, the universe is initially contractingx
,0), but ultimately bounces into an expansionary phasex
.0). The bounce is induced by the two-form potential.
follows from Eq.~12! that the field strength of this antisym
metric tensor field is directly proportional to the volum
form of the three-space. This implies that the axion field m
be interpreted as a membrane that is wrapped around
spatial hypersurfaces@18#. This membrane resists the initia
collapse of the universe and results in a bouncing cosm
ogy. Many solutions exhibit such a bounce, but others c
lapse to zero volume. These arise when the initial kine
energy of the modulus field~internal space! is sufficiently

FIG. 1. Phase portrait of the invariant submanifoldz50, corre-
sponding to the case where the RR four-form field strength is tri
and the NS-NS three-form field strength is dynamically importa
The line L1 represents a line of equilibrium points. Large bla
dots denote repellers~sources! while grey-filled dots denote attrac
tors ~sinks!. The point P represents a source in both the tw
dimensional and three-dimensional phase spaces.

FIG. 2. Phase portrait of the invariant submanifoldV50, cor-
responding to the case where the NS-NS three-form field streng
trivial and the RR four-form field strength is dynamically importan
See also caption to Fig. 1.
04350
-

re

t

y
he

l-
l-
c

high that it can always dominate the kinetic energy of t
axion field.

In the other invariant submanifold (V50), the NS-NS
two-form potential is trivial, and the RR three-form potenti
is dynamical. The cosmological constant termQ2 in the ef-
fective action ~15! may be interpreted as a 0-form fiel
strength. In a certain sense, this degree of freedom pla
rôle analogous to that of a domain wall3 @19#. However, in
contrast to the membrane associated with the axion field,
‘‘domain wall’’ resists the expansion of the universe. Thu
the majority of solutions that are initially expanding ult
mately recollapse, as shown in Fig. 2. There are some s
tions where the internal space is initially evolving suf
ciently rapidly that the modulus field dominates the for
field and the expansion can proceed indefinitely. Solutio
that are initially collapsing do not undergo a bounce.

In both invariant submanifolds, the pointP corresponds to
an endpoint on the line of sources. In Fig. 1, the reflection
this point in the liney50 represents the opposite end of t
line of sources. This point corresponds to a dual soluti
where the radius of the internal space is inverted. Thus,
endpoints of the line of sources in the invariant submanif
z50 are related by a scale factor duality.

We may now consider the dynamics in the full thre
dimensional phase space, where both the NS-NS two-f
potential and RR three-form potential are dynamically s
nificant. Although they are asymptotically negligible, the i
terplay between these fields has important consequen
The key point is that the RR field causes the universe
collapse, but the NS-NS field has the opposite effect. Th
two fields therefore compete against one another, as ca
seen in Figs. 3 and 4.

The pointP is the only source in the system when bo
form fields are present. Furthermore, it follows from the de
nitions ~26! that it represents the collapsing, isotropic, te

3In general, a solitonicp-brane is supported by the magnet
charge of a (D2p22)-form field strength inD spacetime dimen-
sions.

l
t.

is

FIG. 3. Phase diagram of the spatially flat cosmologies wh
both NS-NS and RR form fields are non-trivial. Note thatL1 rep-
resents a line of equilibrium points. The trajectories in Figs. 1 an
are depicted in grey in this figure alongz50 andz512x22y2,
respectively. Small black dots represent saddle points. See also
tion to Fig. 1.
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dimensional cosmology, wherea5b. The four-dimensional
dilaton field,F, is trivial in this case. As the collapse pro
ceeds, a typical orbit moves upwards in a cyclical fash
until a critical point is reached, where one of the form fiel
is able to dominate the dynamics. The orbit then shadows
corresponding trajectory in the invariant submanifoldz50
or V50. In Fig. 3, the axion field dominates and causes
universe to bounce. By this time, however, the kinetic ene
of the modulus field has become significant and the solu
ultimately asymptotes to a dilaton-moduli-vacuum soluti
on L1.

All sinks in this phase space correspond to solutio
where the internal dimensions are expanding (y.0). There
is a particular point where the spatial dimensions spann
the spacetimeM4 become static in the late-time limit. In
general, zero volume in a finite time or superinflate (ä.0)
towards a curvature singularity. In this sense, they co
spond to pre-big-bang cosmologies, since the comov
Hubble radius decreases@15,20#. However, since the interna
space is expanding, it is not clear to what extent this beh
ior represents a realistic, four-dimensional inflationary so
tion.

As discussed above, the time-reversed dynamics of
above class of models is deduced by interchanging
sources and sinks and reinterpreting expanding solution
terms of contracting ones, and vice versa. Thus, the late-
attractor for the time-reversed system is the expanding,
tropic, ten-dimensional cosmology located at pointP.

It is of interest to reinterpret the equilibrium points of th
phase space in terms of eleven-dimensional solutions. S
the eleven-dimensional three-form potential is trivial onL1,
these points represent ‘‘Kasner’’ solutions to eleve
dimensional, vacuum Einstein gravity. Thus, the lineL1 is
analogous to the Kasner ring that arises in the vacuum B
chi I models of four-dimensional general relativity@16#.

For the compactification we have considered, the sc
factors in the eleven-dimensional frame are$eã,eb̃,eg%,
where, from Eq.~4!, ã[a2g/2 andb̃[b2g/2. The ‘‘Kas-
ner’’ solutions are then given by the power lawsã5a0 / t̃ ,
b̃5b0 / t̃ and g5g0 / t̃ , where t̃[*dt exp(2g/2) and the
constants of integration satisfy the constraints 3a016b0

1g051 and 3a0
216b0

21g0
251.

FIG. 4. An alternative view of a different trajectory in the sp
tially flat phase space. See also captions to Figs. 1 and 3.
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These redefinitions imply that the sourceP corresponds to
the ‘‘Kasner’’ solution (a0 ,b0 ,g0)5(0,0,1). This point rep-
resents the Taub form of Minkowski spacetime@16#. The
relevance of this solution to the problems associated with
pre-big-bang curvature singularity have recently been d
cussed@7,8#, and it is interesting from an eleven-dimension
point of view that such a simple solution is uniquely selec
by the dynamics. The endpoints of the line of sinks onL1

correspond to the ‘Kasner’ solutions (1/2,0,21/2) and
(0,2/7,25/7), respectively, and consequently in both case
subset of the scale factors are static.

This concludes our discussion of the phase space for
spatially flat cosmologies. In the following section, we co
sider the robustness of these models to a number of pos
generalizations, including the effects of spatial curvature

VI. ROBUSTNESS OF THE MODELS

A. Effects of spatial curvature

Although the compactness of the phase space depend
the fact thatk<0, one can assume arbitrary signs fork in
order to determine thelocal stability of the equilibrium
points in the three-dimensional setu50 with respect to cur-
vature perturbations. The eigenvalue associated withu for
the equilibrium pointsL1 is always negative. This mean
that the sinks onL1 ~i.e., points onL1 for x.21/A3 and
A2y.x21/A3) remain sinks in the four-dimensional pha
space. In addition, this implies that the pointP is now only a
saddle; that is,the stability of Pis unstable to the introduc
tion of both positive and negative spatial curvature.

Since a portion of L1 acts as sinks in the four
dimensional phase space, there exists theglobal result that
the corresponding dilaton-moduli-vacuum solutions~37! ~for
3ȧ.2ẇ and 6ḃ.3ȧ2ẇ) will be attracting solutions for
the spatially curved models. We may deduce further glo
results by restricting our attention to the negatively curv
models (k,0), in which case the four-dimensional pha
space is compact. As discussed above, the pointP is a only a
saddle point in this extended phase space. Moreover, it
lows from the analysis of Sec. IV that the only attractin
equilibrium point is the pointR. ~There is an additiona
saddleM which will affect the possible intermediate dynam
ics.! This source corresponds to a negatively curved mo
with a trivial axion field; indeed, it is a power-law, sel
similar collapsing solution with non-negligible modulus an
RR form field.

We have been unable to find a monotone function on
extended four-dimensional phase space, but it is plaus
that all negatively curved models evolve from the soluti
corresponding to the global sourceR towards the dilaton-
moduli-vacuum solutions~on the attracting portion ofL1).
Clearly the curvature is dynamically important at early time

In the time-reverse case, the solutions asymptote from
non-inflationary dilaton-moduli-vacuum solutions in the pa
and evolve to the future towards a curvature domina
model; it is plausible that they evolve towards a model wh
is the time-reversal of the one represented byR. Therefore,
curvature can also be dynamically important at late times
4-7
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B. Effects of generalized couplings

We now consider a generalization of the effective act
~15! given by

S5E d4xA2gH e2FFR1~¹F!226~¹b!2

2
1

2
e2F~¹s!222LG2

1

2
Q2ecbJ , ~38!

whereL represents a cosmological constant term andc is an
arbitrary constant. The former term may arise through n
perturbative corrections to the string effective action. T
motivation for considering an arbitrary coupling of th
modulus field to the four-form field strength is that the ge
erality of the dynamics discussed in Sec. IV~in which c5
26) can be investigated. Equation~38! reduces to the action
studied in Ref.@21# whenc50.

By invoking the same assumptions as in Sec. III, the
tion ~38! reduces to

S5E dtFe2w~3ȧ22ẇ216ke22a16ḃ222L!

1
1

2
ew16aṡ22Q2ecb13aG , ~39!

and the corresponding field equations can again be der
from this action. In analogy with Eqs.~23! and~28a!–~28d!,
we introduce a new time variable,t, defined by

d

dt
5~w8!21e2(1/2)(cb1w13a)

d

dt
, ~40!

and the new reduced variable

v5
2Le2(3a1w1cb)

~w8!2
. ~41!

From these definitions and the reduced variables defined
lier, we obtain a five-dimensional system of ordinary diffe
ential equations for the reduced~dimensionless! variables af-
ter eliminating the variableV that is now defined byV[1
2x22y22z2u2v. Since r>0, all of the dimensionless
variables are bounded for the models withk<0 andL.0,
where the physical state space is defined by
,$x2,y2,z,u,v%,1, and a global analysis is therefore po
sible in this case. Including the boundariesV50, z50, u
50 andv50 leads to a compact state space.

We can analyze these models and obtain qualitative in
mation about the dynamics in an analogous way to that d
in Sec. III @22#. The equilibrium setL1: x21y251, z5u
5v50 still exists, and since the eigenvalues associated w
(u and! v are ~both! negative, part ofL1 will act as sinks
and the non-hyperbolic pointx521/A3, y52A2/3, z5u
5v50 is clearly a saddle. These are local results and
valid in all cases.

There also exists an attracting equilibrium pointW:
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x52A3~121c2!D2, y58cA6D2, z52192CD4,

u5v50, ~42!

with eigenvalues

22CD2, 2„C6AC~17c21924!…D2,

24~121c2!D2, 26~121c2!D2,

whereC[(c16)(c26) andD22[1081c2. Note that this
point corresponds to an exact self-similar collapsing cosm
logical solution with non-trivial modulus and four-form
fields. The value ofV as a function ofc is given by

V5
22C~601c2!

~1081c2!2
, ~43!

which implies that26<c<6 in order forV>0. Whenc
566, the pointW is a part of the equilibrium setL1; in fact,
it becomes just the non-hyperbolic pointP discussed previ-
ously. Note that it is also a part of the invariant submanifo
cx26A2y1A3c50; u5v50, which generalizes the in
variant submanifoldK defined in Eq.~32!.

There are two non-flat (uÞ0) vacuum equilibrium points
with a vanishing cosmological constantv50, one of which
is a source and the other a saddle. There is also a n
hyperbolic vacuum equilibrium point with a non-vanishin
cosmological constant (v51) with x5y5z5u50, which
appears to be a source. In addition, we can find monot
functions in the boundary submanifolds; indeed, the bou
ary V5u5v50 and the boundary submanifoldz5u5v
50 can be solved exactly in terms of the variables of
state space. Exact solutions of the equations of motion
particular values ofc can also be found.

However, the primary motivation for these comments
to emphasize two important points regarding the very int
esting dynamics of the M-theory cosmologies studied earl
First, we note that the conclusions obtained for the spati
curved models are robust when additional physical fie
~e.g., aL term! are included. Second, and perhaps mo
importantly, we see that the valuec526 is a bifurcation
value in the analysis of general models with arbitrary co
pling, c. In this context, therefore, the M-theory cosmolog
cal models we have studied exhibit rather unique dynam

VII. DISCUSSION

In this paper we have presented a complete dynam
analysis of spatially flat, four-dimensional cosmologic
models derived from the M-theory and type IIA string effe
tive actions. We have shown that models generically sp
away from a sourceP, undergoing bounces due to the inte
play between the NS-NS two-form potential and the R
three-form potential. Eventually, they evolve towar
dilaton-moduli-vacuum solutions with trivial form field
~corresponding to the sinks onL1). We note the important
dynamical result thatw8 is monotonic.

Thus, the form fields that arise as massless excitation
4-8
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DYNAMICS OF M-THEORY COSMOLOGY PHYSICAL REVIEW D61 043504
the type IIA superstring spectrum, or equivalently from t
three-form potential of eleven-dimensional supergrav
may have important consequences in determining initial
final conditions in string and M-theory cosmologies, ev
though they are dynamically negligible in the early- and la
time limits. In particular, the pointP is the only source in the
system. It can be interpreted in the string context as the
tropic, ten-dimensional solution. Alternatively, it represen
the Taub form of flat space when viewed in terms of elev
dimensional variables.

When the effects of spatial curvature are included,
obtained the local result that the pointP becomes a saddle
On the other hand, the dilaton-moduli-vacuum solutions w
trivial form fields are generic attracting solutions. In th
analysis of the negatively-curved models, we found that
early time attractor~the sourceR) has non-zero curvature
implying that spatial curvature is dynamically important
early times in these examples.

This work can be generalized in a number of ways. W
considered a specific compactification from eleven to f
dimensions, where the topology of the internal dimensio
was assumed to be a product space consisting of a circle
an isotropic six-torus. We emphasize, however, that
analysis also applies to compactifications on a Calabi-Y
three–fold since the gauge fields arising from the high
dimensional metric have been ignored@7#. The qualitative
analysis may be readily extended to compactifications o
general, rectilinear torusS13 . . . 3S1. After suitable redefi-
nitions of the additional moduli fields that subsequen
7
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arise, the dimensionally reduced action can be expressed
cisely in the form of Eq.~15!, with the inclusion of a set of
massless scalar fields in the NS-NS sector. In particular,
compactification onT43T23S1, where Tn represents the
isotropic n-torus, is relevant to compactifications involvin
the four-dimensional spaceK3 @23#. This space has playe
an important role in establishing various string dualities@3#.
It is the simplest four-dimensional, Ricci-flat manifold aft
the torus@24# and may be approximated by the orbifoldK3
'T4/Z2 @25#.

Moreover, the effects of spatial anisotropy in the spa
time M4 can also be considered by introducing two, u
coupled moduli fields into the NS-NS sector of the reduc
action~16!. In this context, such fields parametrize the sh
in the cosmologies. When these fields are non-trivial,
models represent the class of isotropic curvature cosmolo
and correspond to Bianchi type I, V and IX univers
@21,26#. It would be interesting to consider these generali
tions further.
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