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Using the formal equivalences between Kaluza–Klein gravity, Brans–Dicke theory and
general relativity coupled to a massless scalar field, exact solutions obtained in one
theory will correspond to analogous solutions in the other two theories. Often exact
solutions in one theory are “rediscovered” since theory are not recognized as analogs of
the corresponding solutions in one of the other theories. We review here a number of
exact solutions in each of the theories, with an emphasis on identifying and presenting
the higher-dimensional version of the solutions. We also briefly comment upon the formal

equivalence between Kaluza–Klein theory and scalar–tensor theories in general.

1. Introduction

Recently there has been a resurgence of interest in the investigation of exact solu-

tions of the five-dimensional Kaluza–Klein theory governed by the vacuum Einstein

field equations and their relationship with the induced matter theory (Refs. 23, 68

and 69, see also references cited in these papers).

In addition, scalar–tensor theories of gravity have also been widely studied in

recent years,3,4,6,7,11,25,27,35 partially due to their relationship with the low energy

limit of various unified field theories such as superstring theory36; in particular, the

dimensional reduction of higher-dimensional gravity results in an effective scalar–

tensor theory.32,40

For example, it is known that five-dimensional Kaluza–Klein theory with vacuum

Einstein field equations (in which the metric is independent of the extra spatial

dimension, ψ) is equivalent to the vacuum Brans–Dicke theory in four dimensions

with the free parameter ω = 0.15 In particular, the five-dimensional Einstein–Hilbert

action in the absence of matter is

S =
1

16πG5

∫
M5

d5x
√
−(5)g (5)R , (1)

where (5)g is the determinant of the five-dimensional metric (5)gAB (A,B = 0, 1,

2, 3, 4) on the manifold M5 = M4 × M and (5)R is its associated Ricci scalar
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(G5 is the gravitational constant). If we write (α, β = 0, 1, 2, 3)

(5)gαβ = g̃αβ + φ2AαAβ ,

(5)gα4 = (5)g4α = φ2Aα ,

(5)g44 = φ2 ,

(2)

then if the fields are independent of the fifth coordinate x4 = ψ (the zero-mode,

i.e. the effective low energy theory), we can integrate to obtain the four-dimensional

action

S =
1

16πG

∫
M4

d4x
√
−g̃
[
φR̃ − 1

4
φ3F̃αβ F̃

αβ

]
, (3)

where R̃ is the Ricci scalar for the (four-dimensional) g̃αβ and F̃αβ ≡ Aα,β − Aβ,α
(and Newton’s constant G is equal to G5 integrated over ψ). It is always possible

to locally choose coordinates in (2) such that (5)g4α = 0 (i.e. Aα = 0). With this

coordinate choice, the action (3) is that of the vacuum Brans–Dicke theory (in four

dimensions) with ω = 0.

However, this formal equivalence is often not recognized when new solutions of

either Kaluza–Klein theory or Brans–Dicke theory are found, and it is rarely utilized

in obtaining new solutions. One exception is in the work of Romero and Tavakol61

in which the formal equivalence of a cosmological Kaluza–Klein solution of Wesson

and Ponce de Leon and the vacuum Brans–Dicke solution of O’Hanlon and Tupper

(with ω = 0) is noted.

This letter will repeatedly refer to three different theories of gravity, namely

five-dimensional Kaluza–Klein theory, Brans–Dicke theory and general relativity

coupled to a massless scalar field. Table 1 summarizes the notation and conventions

used for the metric and scalar field in each theory, and also gives the reference for

the relevant Einstein–Hilbert action.

Table 1. Notation used for each theory and the relevant Einstein–Hilbert action.

Theory Metric and scalar field Relevant action

Kaluza–Klein (5)gαβ → g̃αβ , φ Eqs. (1) and (3)

Brans–Dicke gαβ ,Φ Eq. (8)

G.R.+M.S.F. ḡαβ , φ̄ Eq. (12)

2. Static Spherically Symmetric Case

The general (asymptotically flat) three-parameter static, spherically symmetric vac-

uum solution in isotropic coordinates in the Brans–Dicke theory was given originally

by Brans and Dicke15 as

ds2 = −
(

1−m/r
1 +m/r

)2/α

dt2 +
(

1 +
m

r

)4
(

1−m/r
1 +m/r

) 2
α (α−β−1)

(dr2 + r2dΩ2) , (4)
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and the static Brans–Dicke scalar field is given by

Φ = Φ0

(
1−m/r
1 +m/r

)β/α
. (5)

The constants Φ0 and m are arbitrary, whereas α and β are constrained by

α2 =
(ω

2
+ 1
)
β2 + β + 1 . (6)

Evidently, in the case that the Brans–Dicke parameter ω is zero, we recover the

two-parameter (five-dimensional) Kaluza–Klein solution (with (5)g44 = Φ2 = φ2,

and the constant Φ0 can be absorbed into the coordinate x4) given by Gross and

Perry37 and Davidson and Owen.28 The physical properties of this Kaluza–Klein

solution was discussed by Davidson and Owen28 and by Wesson.67 The geometrical

properties, also investigated in Refs. 12 and 70 have also been studied. However,

it seems to have been overlooked that these properties are all known from earlier

studies of Brans–Dicke solution (4), (5) (see, for example, Refs. 2 and 15).

The correspondence between Brans–Dicke theory and five-dimensional Kaluza–

Klein theory can be generalized to ω 6= 0 by the transformations8

φ = Φµ , g̃αβ = Φ1−µgαβ , (7)

(here and throughout, we define the constant µ ≡
√

1 + 2ω/3, unless otherwise

noted) which transform (3) into

S =
1

16πG

∫
M4

d4x
√
−g
[
ΦR− ω

Φ
∇αΦ∇αΦ− 1

4
Φ3µFαβF

αβ

]
, (8)

i.e. the Brans–Dicke theory with a vector potential (note that Fαβ = F̃αβ , and ∇α
represents covariant differentiation with respect to the new metric gαβ). Hence, any

solution of (8) can be transformed into a Kaluza–Klein static solution with

(5)gαβ = Φ1−µgαβ + Φ2µAαAβ ,

(5)gα4 = Φ2µAα ,

(5)g44 = Φ2µ .

(9)

To illustrate, using (9), the Kaluza–Klein solution constructed from (4) and

(5) is

ds2 = −
(

1−m/r
1 +m/r

)2/α′

dt2 +
(

1 +
m

r

)4
(

1−m/r
1 +m/r

) 2
α′ (α

′−β′−1)

(dr2 + r2dΩ2)

+

(
1−m/r
1 +m/r

)2β′/α′

dψ2 , (10)



2124 A. Billyard & A. Coley

where

α′ =
α

1 + 1
2β −

1
2µβ

, β′ =
βµ

1 + 1
2β −

1
2βµ

,

α =
α′µ

µ− 1
2β
′ + 1

2µβ
′ , β =

β′

µ− 1
2β
′ + 1

2β
′µ
.

Substituting (α′, β′) for (α, β), Eq. (6) becomes α′2 = β′2 + β′ + 1 which is the

consistency relationship for the known Kaluza–Klein static spherically symmetric

solution.

3. Axial Symmetry

Brans–Dicke theory is formally equivalent to general relativity plus a massless

scalar field17,29,48,65 under the field redefinition and conformal transformation

(respectively)

φ̄ =
√

3µ ln Φ ,

ḡαβ = Φgαβ ,
(11)

from which (8) becomes

S =
1

16πG

∫
M4

d4x
√
−ḡ
[
R̄− 1

2
∇̄αφ̄∇̄αφ̄−

1

4
e
√

3φ̄F̄αβ F̄
αβ

]
(12)

(F̄αβ ≡ Fαβ and F̄αβ is obtained from ḡαβ). Therefore Kaluza–Klein solutions

can be obtained from known scalar field solutions in general relativity as well. For

clarity, let us explicitly mention the field equations for some of the aforementioned

theories. Gravity as described by (8) with Aα = 0 is governed by the field equations

Rαβ =
∇α∇βΦ

Φ
+

ω

Φ2
∇αΦ∇βΦ ,

�Φ = 0

(where � is the d’Alembertian), whereas the conformal transformation to (φ̄, ḡαβ)

changes these equations to

R̄αβ =
1

2
∇̄αφ̄∇̄βφ̄ ,

�̄ φ̄ = 0 .

However, the latter is often expressed in slightly different forms in the literature

[e.g. in Ref. 2, R̄αβ = −2∇̄αϕ̄∇̄βϕ̄ was used].
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There are several examples of static, axially symmetric vacuum (Kerr-like) solu-

tions both in Brans–Dicke theory and in theories where general relativity is coupled

to a massless scalar field. This suggests that Kerr-like solutions in Kaluza–Klein

theory can also be obtained. Krori and Bhattacharjee42 have found Kerr-like solu-

tions in Brans–Dicke theory and have extended these to Demianski-type solutions,43

whereas Agnese and La Camera2 have obtained Kerr-like solutions in general rela-

tivity theory with a scalar field. In comparing the Kerr-like solutions between the

two sets of data, the transformation (11) can be used to verify that the two met-

rics are indeed equivalent, while the scalar fields in each theory are only equivalent

in the absence of the rotational parameter. The Kaluza–Klein Kerr-like solutions

corresponding to either theory can be written as

ds2 =
1

ξ

{
Cfdt2 − 2a sin2 θ(Cf − 1)dt dϕ− (r2 + a2 cos2 θ)C1−f

(
dr2

∆
+ dθ2

)

− sin2 θ
[
(r2 + a2 cos2 θ)C1−f + a2 sin2 θ(2− Cf )

]
dϕ2

}
− ξ2dψ2 , (13)

where

C = 1− 2ηr

r2 + a2 cos2 θ
, (14)

∆ = r2 + a2 − 2ηr . (15)

For the Kerr-like solution of Ref. 2 one has f = m/η, η ≡
√
m2 + σ2 and

ξ =

(
r − η −

√
η2 − a2

r − η +
√
η2 − a2

)σ/(2√3
√
η2−a2)

. (16)

For the Kerr-like solution of Ref. 42 one has f = 1/λ+ c/(2λ) and

ξ = Ccµ/(2λ) . (17)

Analogously, Krori and Bhattacharjee’s Demianski-like solution43 (of which their

Kerr-like solution is a subclass) can be expressed in a five-dimensional formalism.

We note, however, that we have not been able to confirm any of these as solu-

tions, despite the fact that corrections have been made to Agnese and La Camera’s

solution.1

There is a class of axially symmetric solutions already known in Kaluza–Klein

theory by Bruckman.16 This appears to be a larger class of solutions than the Brans–

Dicke solutions of Krori et al.43 or the relativistic scalar field solutions of Agnese

et al.,2 since Bruckman’s solutions contain prolate and oblate configurations and do

not necessarily reduce to spherical symmetry when there is no rotation. However,

the constants in these solutions can be adjusted so that one may obtain spherical
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symmetry in such a limit. Ma46 used Bruckman’s solutions in this way to produce

Brans–Dicke Kerr-like solutions, although it is not apparent that these solutions are

equivalent to the aforementioned axially symmetric solutions except in two limits;

one limit is when the five-dimensional metrics reduce to a four-dimensional Kerr

solution plus a flat fifth dimension (g44 = 1), and the second limit is when the

rotation parameter is set to zero and the solutions reduce to the known Brans–

Dicke spherically symmetric class of solutions (Eqs. (4) and (5)).

Myers and Perry55 also obtained Kerr-like solutions, but for arbitrary dimen-

sions. Their five-dimensional solution differs from Bruckman’s in that it contains

neither the 4-D Kerr solution (with g44 = 1) nor the known 5-D spherically-

symmetric solution as special cases. This solution give rise to the following Brans–

Dicke solution (which apparently has not been written down):

ds2 = (r cos θ)1−1/µ

{
−
(

1− M

r2 + a2 cos2 θ

)
dt2 + 2

aM sin2 θ

r2 + a2 cos2 θ
dt dϕ

+ (r2 + a2 cos2 θ)

(
dr2

r2 + a2 −M + dθ2

)

+ sin2 θ

[
(r2 + a2) +

a2M sin2 θ

r2 + a2 cos2 θ

]
dϕ2

}
(18)

and

Φ = (r cos θ)1/µ . (19)

4. Solutions with Aα =/ 0

We turn our attention next to solutions in which the five-dimensional solution has

Aα 6= 0 [see Eq. (9)], or, equivalently, solutions in the Brans–Dicke theory which

contains a vector field. First, there is the Kaluza–Klein static, spherically symmetric

vacuum solution of Liu and Wesson45

ds2 =
(1− k)Ba

1− kBa−b dt
2 −B−a−bdr2 − r2B1−a−b dΩ2

− Bb − kBa
1− k (dy +Aγdx

γ) , γ = 0, 1, 2, 3 (20)

in which the vector potential is given by

Aα =

[
−
√
k(1−Ba−b)

1− kBa−b , 0, 0, 0

]
, (21)

where

B =

(
1− 2(1− k)M

r

)
, (22)
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and k, a and b are constants satisfying a2 + ab + b2 = 1. (When k = 0, the

known five-dimensional static, spherically symmetric solution is recovered.) Duff30

has also discussed a five-dimensional solution with Aα 6= 0 corresponding to (20)–

(22) with a = 1, b = 0 (this is realized by translating Liu and Wesson’s origin

by r → r − 2Mk and setting Duff’s constants r+ and r− to 2M and 2Mk, re-

spectively). Duff30 also discussed a magnetic monopole solution with either Aα =

[0, 0,
√
r+r−φ sin θ+χ(θ), 0] (where χ(θ) is arbitrary) or Aα = [0, 0, 0,

√
r+r− cos θ].

The latter solution can be reduced to the magnetic monopole solution of Gross

and Perry.37 In Gross and Perry37 there are several examples of five-dimensional

solutions with Aα 6= 0, and we simply note them here with the corresponding

equations from their paper: the magnetic monopole solution [Eq. (18)], the non-

interacting multi-monopole solution [Eqs. (26) and (27)], the Kaluza–Klein dipole

solution [Eq. (30)] and the single dipole–single monopole combination [Eq. (35)].

All of these Kaluza–Klein solutions have analogs in the Brans–Dicke theory.

In addition, Agnese and La Camera2 obtained a Reissner–Nordstrøm-like space–

time coupled to a massless scalar field, the vector field of which isAα = (V (r), 0, 0, 0)

where

|gθθ|
d

dr
V (r) = q , (23)

defining q as the total electric charge of the body. Finally, Garćıa and Mitskiévić33

obtained two sets of solutions in the Brans–Dicke formalism coupled to a vector

field. The first set is a class of Kerr–Newman metrics with a scalar field defined

by an infinite sum of (asymptotically flat) Legendre polynomials. When all the

constants in the Legendre polynomials vanish, a Kerr–Newman (charged) metric

with a constant scalar field is recovered. The second set of solutions is a class

of Brans–Dicke solutions analogous to the charged Tomimatsu–Sato solution (see

Ernst31).

5. Self-Similar Solutions

We now turn our attention to exact self-similar solutions. Self-similar solutions of

the first kind are solutions admitting a homothetic vector; that is, there exists a

vector field, ξ, such that

Lξgab = 2cgab , (24)

where Lξ is the Lie derivative along ξ and c is a constant. In the event that c = 0, ξ is

then a Killing vector. When c 6= 0, i.e. ξ is a proper homothetic vector, units can be

chosen to set c = 1. Self-similarity in cosmology and generalized self-similarity have

recently been reviewed in Carr and Coley18 and in Coley24 (see also references cited

therein). Self-similar solutions also exist in scalar–tensor and higher-dimensional

gravity theories. For example, in four dimensions the spherically symmetric metric

of the form

ds2 = −eF (r/t)dt2 + eG(r/t)dr2 + r2eH(r/t)dΩ2 (25)
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admits the homothetic vector

ξa = (t, r, 0, 0) . (26)

Note that this metric remains invariant under the rescalings r → ar and t→ at (a

constant).

In order to study the possible equivalence between self-similar solutions in

Kaluza–Klein theory, Brans–Dicke theory and general relativity coupled to a mass-

less scalar field, let us obtain the five-dimensional generalization of (26). If we

assume that ξa = (t, r, 0, 0, 0), then the corresponding metric that satisfies (24) is

ds2 = −eF̃(r/t)dt2 + eG̃(r/t)dr2 + r2
(
eH̃(r/t)dΩ2 + eL̃(r/t)dy2

)
. (27)

Alternatively, the metric

ds2 = −eF̃(r/t)dt2 + eG̃(r/t)dr2 + r2eH̃(r/t)dΩ2 + eL̃(r/t)dy2 (28)

admits the homothetic vector ξa = (t, r, 0, 0, y). Hence, given a scalar field solution

(either in Brans–Dicke theory or relativistic massless scalar field theory), it is the

form of the scalar field which will determine the form of the five-vector ξ since it is

the scalar field which determines the form of the dy2 term in the five-dimensional

metric.

There is an extensive literature of self-similar solutions in general relativity.18

However, let us restrict our attention here to spherically symmetric solutions in

either Brans–Dicke theory or general relativity coupled to a scalar field, since these

solutions are important in the study of naked singularities and critical phenomena.18

Roberts,60 in an attempt to find counterexamples to the cosmic censorship hypo-

thesis, found an analytic self-similar, spherically symmetric solution which contained

a naked singularity. This solution was “generalized” by de Oliveria56 in an inves-

tigation of critical phenomena which was instigated by the numerical study of the

spheical symmetric gravitational collapse of a massless scalar field.22

In most of the aforementioned works the line element is expressed in double-null

coordinates (see, for instance, Refs. 13 and 14)

ds2 = −e2σ(u,v)dudv + f(u, v)dΩ2 . (29)

The most general solution to the governing field equations is given by

e2σ(u,v) = 1 ,

f(u, v) =
(1 + C2

y − C2
q ± 2Cy)u

2

4a2(1 + C2
q − C2

y )
− uv

2
+
a2(1 + C2

y − C2
q ∓ 2Cy)v2

4(1 + C2
q − C2

y)
,

(30)

where the scalar field is given by

φ̄ = ± ln

[
(Cy − Cq ± 1)u+ a2(Cy − Cq ∓ 1)v

(Cy + Cq ± 1)u+ a2(Cy + Cq ∓ 1)v

]
(31)
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(Cy, Cq and a are all constants). This is Roberts’ solution when Cq = −Cy, and

also the solution of de Oliveira56 and of de Oliveira and Cheb-Terrab57 under re-

definitions of the constantsCq and Cy. By “most general” above, we mean that with

the assumption of self-similarity, the field equations can be directly integrated with

(30) and (31) as the solution. Although many authors initially assume eσ = con-

stant, it can be shown that σ must be constant in order for the field equations to

be satisfied and can be arbitrarily set to zero without loss of generality.

Using the coordinate transformations u = a(t + r) and v = 1
a (t − r), and

applying (11) and (7), the corresponding five-dimensional solution is

ds2 = ζ
∓ 1√

3

(
−dt2 + dr2 + r2 1± Cy tr + (C2

y − C2
q ) t

2

r2

1 + C2
q − C2

y

dΩ2

)
+ ζ
± 2√

3 dy2 , (32)

where

ζ = 1− 2Cq
Cy + Cq ± t/r

. (33)

Note that here (5)gyy = (5)gyy(r/t) and so the corresponding five-dimensional ho-

mothetic vector must be ξa = (t, r, 0, 0, y).

Most solutions based on Roberts’ solution are found within the framework of

general relativity coupled to a massless scalar field. However, Chiba and Soda19 and

de Oliveira56 have attempted to find a corresponding solution in the Brans–Dicke

formalism, by using the relations (11). Therefore, the corresponding Kaluza–Klein

solution obtained from these Brans–Dicke solutions will be the same as (32).

There are other examples of self-similar, spherically-symmetric solutions. In

particular, Soda and Hirata63 studied (4 + D)-dimensional gravity coupled to a

massless scalar field. However, since their (4 + D)-dimensional energy-momentum

tensor is not that of a vacuum, the conformal transformations in this letter do not

necessarily hold. Also, Wang and de Oliveira66 have found a solution in which the

metric functions and massless scalar field involve Heaviside functions, which was

obtained by matching two different solutions along a null hypersurface. Again, one

is then able to produce analogous solutions both in the Brans–Dicke framework as

well as the Kaluza–Klein framework.

6. Concluding Remarks

In this letter we have noted the formal equivalence of five-dimensional vacuum gen-

eral relativity, Brans–Dicke theory and general relativity plus a massless scalar field,

and we have utilized this equivalence to obtain analog exact solutions. Often such

analogs are not recognized as such and apparently known solutions are rediscov-

ered. We are particularly interested in recognizing and obtaining exact solutions
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of the five-dimensional Kaluza–Klein theory governed by the vacuum Einstein field

equations.

The generation of exact solutions can be done, and is indeed done, by uti-

lizing the formal dynamical equivalence (via conformal transformations, field re-

definitions and dimensional reduction) of higher-dimensional (≥ 5) Kaluza–Klein

theories, Brans–Dicke theory and generalized scalar–tensor theories (cf. Refs. 10

and 64), general relativity and a number of (coupled) scalar fields, and higher

derivative (e.g. f(R)) theories, at least in the classical sectors of these

theories.5,9,11,25,39–41,44,48–53,59,62,65,71

For example, Freund32 and Holman et al.41 have shown that a (4 + D)-

dimensional theory with a certain ansatz is equivalent to Brans–Dicke theory with a

specific value for the coupling parameter, namely ω = 1/D − 1. A confor-

mal transformation similar to (9) (with Aα = 0) can be made to generalize this

correspondence to arbitrary ω (via φ = Φµ/D and g̃αβ = Φ1−µgαβ where now

µ ≡
√

(ω + 3/2)/(1/D+ 1/2)).

In addition, it has been shown that the field equations of the (2n + 4)th order

gravity, derived from a Lagrangian that depends on R, �R and �nR (where �
is the d’Alembertian), are equivalent to the field equations of Brans–Dicke gravity

(with ω = 0) with an interaction potential for the Brans–Dicke field and n further

scalar fields.48,65

In particular, the Kerr-like solutions of Myers and Perry55 in arbitrary dimen-

sions will give rise to analogous four-dimensional scalar–tensor solutions, as will

the various higher-dimensional static spherically symmetric exact solutions and so-

lutions that admit a D-dimensional space of constant curvature.9,21,23,38,47,58,59,72

A particular example of a (4 + D)-dimensional manifold is the 1354-dimensional

zero-curvature Kasner solution, where the metric is given by

ds2 = −dt2 + t
142
123 (dr2 + r2dΩ2) + t−

2
1845 dΞ2 , (34)

and where dΞ2 ≡
∑1353
i=4 (dyi)2.

The plethora of exact cosmological solutions of Brans–Dicke theory and its

generalized scalar–tensor theories3,4,6,7,44,54 will give rise to a host of analogous

higher-dimensional exact solutions. For example, if one performs the conformal

transformation g̃αβ = Φe−f(Φ)gαβ and the field redefinition φ = ef(Φ), where

f(Φ) =
∫ √

1 + 2
3ω(Φ)dΦ

Φ , then one is able to transform between a five-dimensional

Kaluza–Klein solution and a scalar–tensor theory in which ω = ω(Φ).

Finally, it is important to note that the formal equivalences between Brans–

Dicke theory, Kaluza–Klein theory and relativistic scalar field theory (as reviewed

in this letter) is only valid in the absence of matter fields. In general, as soon

as matter fields are introduced, the scalar fields will interact with the matter in

a nontrivial manner and the formal equivalences between these theories may be

broken (see Refs. 45, 65 and references therein).
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33. A. D. Garćıa and N. V. Mitskiévić, Int. J. Theor. Phys. 28, 1419 (1989).
34. J. Garcia-Bellido and D. Wands, Phys. Rev. D52, 5612 (1995).
35. J. M. Gerard and I. Mahara, Phys. Lett. B346, 35 (1995).
36. M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory (Cambridge Univ.

Press, 1988).
37. D. J. Gross and M. J. Perry, Nucl. Phys. B226, 29 (1983).
38. A. B. Henriques, Nucl. Phys. B277, 621 (1986).
39. P. W. Higgs, Nuovo Cimento 11, 816 (1959).
40. R. Holman, E. W. Kolb, S. L. Vadas and Y. Wang, Phys. Rev. D43, 995 (1991).
41. A. Jakubiec and J. Kijowski, Phys. Rev. D37, 1406 (1988).
42. K. D. Krori and D. R. Bhattacharjee, J. Math. Phys. 23, 637 (1982).
43. K. D. Krori and D. R. Bhattacharjee, J. Math. Phys. 23, 1846 (1982).
44. A. R. Liddle and D. Wands, Phys. Rev. D49, 2665 (1992).
45. H. Liu and P. S. Wesson, Phys. Lett. B381, 420 (1996).



2132 A. Billyard & A. Coley

46. G. Ma, Int. J. Theor. Phys. 34, 2331 (1995).
47. J. Madore, Phys. Lett. A110, 289 (1985).
48. K. Maeda, Phys. Rev. D39, 3159 (1989).
49. G. Magnano, M. Ferraris and M. Franscavigilia, Gen. Rel. Grav. 19, 465 (1987).
50. G. Magnano, M. Ferraris and M. Franscavigilia, Gen. Rel. Grav. 7, 557 (1990).
51. G. Magnano and L. M. Sokolowski, Phys. Rev. D50, 5039 (1994).
52. A. S. Majumdar and S. K. Sethi, Phys. Rev. D46, 5315 (1992).
53. S. Mignemi and D. L. Whiltshire, Phys. Rev. D46, 1475 (1992).
54. J. P. Mimosa and D. Wands, Phys. Rev. D51, 477 (1993).
55. R. C. Myers and M. J. Perry, Ann. Phys. 172, 304 (1986).
56. H. P. de Oliveira, gr-qc/9605008.
57. H. P. de Oliveira and E. S. Cheb-Terrab, Class. Quantum Grav. 13, 425 (1996).
58. E. Poisson, Class. Quantum Grav. 8, 639 (1991).
59. M. Rainer and A. Zhuk, to appear in Phys. Rev. D.
60. M. D. Roberts, Gen. Rel. Grav. 21, 907 (1989).
61. C. Romero and R. Tavakol, Class. Quantum Grav. 12, 2411 (1995).
62. B. Shahid-Saless, Phys. Rev. D35, 467 (1987).
63. J. Soda and K. Hirata, gr-qc/960523.
64. R. V. Wagoner, Phys. Rev. D1, 3209 (1970).
65. D. Wands, Class. Quantum Grav. 11, 269 (1994).
66. A. Wang and H. P. de Oliveira, gr-qc/9608063.
67. P. S. Wesson, Phys. Lett. B276, 299 (1992).
68. P. S. Wesson, Ap. J. 394, 19 (1992).
69. P. W. Wesson and J. Ponce de Leon, J. Math. Phys. 33, 3883 (1992).
70. P. S. Wesson and J. Ponce de Leon, Class. Quantum Grav. 11, 1341 (1994).
71. B. Whitt, Phys. Lett. B145, 176 (1984).
72. D. L. Wiltshire, Phys. Rev. D36, 1634 (1987).


