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Physical Aspects of 5-D Gravity

Abstract

In Kaluza-Klein theory, spacetime is extended to dimensions greater than

four; the simplest version is one in which the augmentation is just by one extra

dimension. The existence of this dimension can be tested over different astro-

nomical scales, and we outline various physical aspects found on these scales.

On the stellar scale, we look at a (4+1) class of solutions analogous to the (3+1)

Schwarzschild solution. In general, the (4+1) centre is actually located at the

(3+1) event horizon. The radii of circular orbits in these manifolds have a much

greater range than in the (3+1) solution and in some cases the entire manifold.

Furthermore, in some cases we see that photons can have stable circular orbits.

Next, we derive a solution that is spherically-symmetric in ordinary 3-D space,

but is also dependent on the extra coordinate. In the induced-matter theory,

where the extra dimension is responsible for matter in the 4-D spacetime, the

solution represents a cloud of matter with density and pressure profiles similar

to that of a rich cluster of galaxies. The motion of particles inside the manifold

is then derived. On the largest scale, we derive a cosmological solution with

an oscillating 3-D spatial section which, in the induced-matter scheme, has a

vacuum equation of state. From this solution we can also get an inflationary cos-

mology. We also show that coordinate transformations from a 5-D “Minkowski”

spacetime can produce various cosmological models.
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Chapter 1

Introduction

The idea of extending general relativity to greater dimensions has been around

for many years, almost as early as the theory of relativity itself. In 1921, Kaluza

[1] extended general relativity to five dimensions in an attempt to unite grav-

ity with electromagnetism, where the extended off-diagonal components of the

metric were related to the electromagnetic vector field and the diagonal metric

component of the fifth dimension was a scalar potential. In 1926, this idea

was further developed by Klein [2] to apply it to quantum mechanics. Often,

any theory which extends general relativity to dimensions greater than four is

referred to as Kaluza-Klein theory.

Klein originally introduced the notion of compactification in order to explain

why the extra dimension is not observable; the extra dimension is “rolled”

1



Chapter 1. Introduction 2

up such that it is unobservable unless small distances or high energies are

considered. Albeit quaint, this theory led to several problems. First there is

the hierarchy problem where the natural mass of particles associated with the

fifth dimension is the Planck mass which is far larger than the masses of real

particles. Secondly, the cosmological constant calculated from the reduction of

higher dimensions to four is far larger than that indicated by astrophysical data.

These problems may be avoided in non-compact Kaluza-Klein theory, on

which there is considerable literature. Perhaps the most studied such version is

the induced matter one, in which the vacuum solutions in five dimensions (5-D)

are interpreted as solutions with matter in four dimensions (4-D), providing a

unification of gravity with its source. This theory plays a significant role in

this paper. The vacuum in five dimensions is described by RAB = 0, where

RAB is the Ricci tensor in 5-D. These fifteen equations contain ten equations of

the form (4)Gαβ =(4) Tαβ, where the left side is the (3+1) Einstein tensor and

the right side is the (3+1) effective energy-momentum tensor which comprises

terms due to the extra dimension (i.e. 5-D portion of the metric and derivatives

with respect to the extra dimension). The remaining five equations comprise

one wave equation and four conservation equations. The notation here and

throughout, unless otherwise stated, is that units are such that c = 8πG = 1.
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Furthermore, uppercase Latin indices range 0-4, lowercase Greek range 0-3 and

lowercase Latin range 1-3.

In this particular theory, the extra metric components are not usually asso-

ciated with an electromagnetic potential. In fact, the off-diagonal components

of the metric gα4 are zero. Further distinctions from the traditional Kaluza-

Klein approach is that the signature of the fifth dimension can be positive or

negative because the extra coordinate is not a simple space or time label, but a

variable related to the properties of 4-D matter in a 5-D vacuum and so there is a

freedom to the choice of signature. In previous work [3]-[8] the extra coordinate

is associated with the rest mass of particles and the signature then determines

whether the mass increases or decreases over time [6]. In this thesis, some solu-

tions require a spacelike signature in order to have a 5-D vacuum (and in some

cases a completely flat metric), and others a timelike signature. Dependence on

the extra coordinate is also a difference from conventional Kaluza-Klein. This

is particularly interesting since it has been shown that metrics dependent solely

on the radial coordinate give an induced equation of state for radiation only [9].

This paper will examine three different metrics, each with a different astro-

nomical scale involved: solar size, galactic cluster size and cosmological. On the

first scale, we examine the (4+1) analogue to the (3+1) Schwarzschild solution.
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Unlike the (3+1) theory, Birkhoff’s theorem does not hold with 3-D spherical

symmetry here. Consequently, there is not a unique solution, but a class of

solutions parameterized by two constants, ε and κ, which obey a consistency

relationship between one another. The Schwarzschild limit is smoothly retrieved

with κ→∞, ε = 0, εκ = 1. This limit returns the (3+1) Schwarzschild metric

plus a flat fifth dimension. Should ε 6= 0, then the fifth dimension becomes

significant and the event horizon disappears [10]-[14]. Because of the lack of

horizon, it would be inappropriate to label these objects as black holes. Instead,

they represent a stable mass centrally located, and better fit the definition of

a soliton from particle physics [15] for which they are here called solitons. It

is possible to test the significance of an extra dimension outside such objects

as the Sun and the Earth, and such tests are currently being explored [17, 16].

Much work has already been done on these solutions, including a study on

classical tests in these manifolds [17] and an in-depth induced-matter analysis

[20]. Because of the latter, this paper will not focus on that particular aspect of

the theory. Instead, we examine where the origin of these solitons are defined.

This is then followed by an examination of the effects of ε and κ as well as

momentum in the fifth dimension on circular orbits.

In chapter 3, we next determine another class of solutions that are also
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spherically symmetrical, but which also depend on the extra coordinate. In the

induced matter scheme, we find a density and pressure relationship similar to

those of rich clusters of galaxies; i.e. static, inhomogeneous isothermal solutions

with density and pressure proportional to r−2. This metric, describing objects

called isotropes, is the 5-D analogue to the 4-D astrophysical solution studied

by Henriksen and Wesson [23, 24]. We then examine the motion of particles in

this manifold which we hope to use later for gravitational lens calculations.

In chapter 4, we find a metric which contains a vacuum equation of state. Al-

though the vacuum is unperturbed, the spatial portion of the metric is oscillating

and so the metric describes what have been called vacuum waves. Upon making

the angular frequency complex, the metric looks like an inflationary cosmology

on hypersurfaces of x4 = ψ = constant. We also show that this metric can

be transformed into a flat “Minkowski” metric, and the same can be done for

other cosmological models previously studied. The conclusions are summarized

in chapter 5.

Appendix A contains the Christoffel symbols (of the second kind) for all the

metrics used in this thesis. It also gives the Riemann tensor components for the

solitons. Many calculations were performed or checked by the software package

Maple V, supplemented with the library GRTensor by Kayll Lake. Appendix
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B contains a few subroutines that were written and used with the Maple V

software. The file mentioned in appendix B can be found on a 3.5′′ floppy at the

back of the thesis.



Chapter 2

The Solitons

2.1 Definition of Origin

Using the notation adopted by Davidson and Owen [11], the line interval de-

scribing the spherically-symmetric, static, five-dimensional vacuum surrounding

a central massive object is given by

ds2 = A2(r)dt2 −B2(r)(dr2 + r2dΩ2)− C2(r)dψ2, (2.1)

where

A(r) =
(
ar − 1

ar + 1

)εκ
(2.2)

B(r) =

(
a2r2 − 1

a2r2

) (
ar + 1

ar − 1

)ε(κ−1)

(2.3)

C(r) =
(
ar + 1

ar − 1

)ε
. (2.4)

7



Chapter 2. The Solitons 8

Here, dΩ2 ≡ dθ2 + sin2θdφ2 and the units are geometric so that c = G = 1.

The integration constant, a, is associated geometrically with the central object

and is often expressed as a = 2
M

, where M is a mass, to more closely resemble

the 4-D Schwarzschild analogue. The other two constants, ε and κ, obey the

relation ε2(κ2 − κ + 1) = 1 as established from the field equations, RAB = 0.

For the range −∞ < κ < ∞, ε ranges between ± 2√
3
. However, ε and κ must

have positive values so that the associated 4-D pressure and density, as well as

mass, are positive [19]. Since these solitons described by (2.1) provide a good

astrophysical model, we will assume that both ε and κ remain positive.

As the line interval (2.1) is in isotropic co-ordinates, it is sometimes conve-

nient to transform it into one which uses quasi-curvature co-ordinates, by which

the 4-D Schwarzschild metric is most commonly described. The transformation

is given by

r̃ = rB(r) = r
a2r2 − 1

a2r2

(
ar + 1

ar − 1

)ε(κ−1)

. (2.5)

Since ε(κ−1) is not necessarily an integer, it is not possible to obtain r(r̃) explic-

itly so that (2.1) cannot be expressed in terms of r̃ for all (ε, κ). However, as the

limits (ε, κ, εκ) → (0,∞, 1) are approached, (2.1) becomes the 4-D Schwarzschild

solution plus a flat fifth dimension. Using (2.5) in this limit, r̃ = r(1 + 1
ar

)2, we
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have (with a = 2
M

)

ds2 =
(
1− 2M

r̃

)
dt2 −

(
1− 2M

r̃

)−1

dr̃2 − r̃2dΩ2 − dψ2. (2.6)

Here, we have an event horizon at r̃ = 2M = 4
a

(or r = 1
a

= M
2

) and a singularity

at r̃ = 0 (r=− 1
a

).

A suitable definition of an origin is a point in the manifold about which the

surface area of a 3-sphere will shrink to zero. From the consistency relation

ε2(κ2 − κ + 1) = 1, it may be verified that −1 ≤ ε(κ − 1) < 1 for all finite

κ ≥ 0 and therefore the 3-D angular portion of (2.1) converges to a point at

both r = ± 1
a
. It is then natural to ask which value of r does one choose as the

origin. In previous work [20] r = 1
a

was taken as the origin, even though (2.6)

admits r=− 1
a

as the origin.

Figure 2.1 shows a graphical representation of (2.5) for various values of

ε(κ− 1). For all values of ε(κ− 1) < 1 it is apparent that r= 1
a

corresponds to

the “quasi-curvature co-ordinate” centre, r̃ = 0. Only for ε(κ − 1) = 1 is this

not so. However, in this Schwarzschild limit, (ε, κ, εκ) → (0,∞, 1), there is no

region of r which covers the region interior to the 4-D event horizon, r̃ = 2M .

In fact, 0 ≤ r ≤ 1
a

merely represents r̃ ≥ 2M again and r̃ = 0 can be obtained

only through r < 0. Hence, on these physical grounds, r= 1
a

will be taken as the



Chapter 2. The Solitons 10

origin of (2.1) for all κ ≥ 0.

0 5/a

0

5/a

-5/a 5/a
-5/a

5/a

1/a-1/a

4/a

Isotropic radius, r

C
ur

va
tu

re
 r

ad
iu

s,
 r~

ε(κ-1) = +1
ε(κ-1) = +0.5
ε(κ-1) =  0
ε(κ-1) = -0.5
ε(κ-1) = -1

Figure 2.1: Transformation between radial and isotropic co-ordinates

We calculated the Kretschmann full curvature invariant scalar for (2.1) by

hand and then affirmed the result via the software packages GRTensor and Maple

V. From (2.1) we have

RABCDR
ABCD = 4

(A′′)2

A2B4
− 8

A′′A′B′

A2B5
+ 12

(A′)2(B′)2

A2B6
+ 16

(A′)2B′

rA2B5

+8
(A′)2

r2A2B4
+ 4

(A′)2(C ′)2

A2B4C2
+ 12

(B′)4

B8
− 16

(B′)2B′′

B7

+24
(B′)2

r2B6
+ 16

B′B′′

rB6
+ 8

(B′′)2

B6
+ 4

(C ′′)2

B4C2
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−8
B′C ′C ′′

B5C2
+ 12

(B′)2(C ′)2

B6C2
+ 16

B′(C ′)2

rB5C2
+ 8

(C ′)2

r2B4C2

where A′ ≡ ∂A(r)/∂r etc. (the Christoffel symbols and the Riemann tensor

components for (2.1) can be found in Appendix A). Substituting in for A, B and

C, the scalar simplifies to

RABCDR
ABCD =

192a10r6

(a2r2 − 1)8

(
ar − 1

ar + 1

)4ε(κ−1)

×

[1− 2ε(κ− 1)(2 + ε2κ)ar + 2(3− ε4κ2)a2r2

− 2ε(κ− 1)(2 + ε2κ)a3r3 + a4r4] (2.7)

For all finite κ there is a divergence at both r = ± 1
a
. Again, if we take r= 1

a
as

the origin, then one must go through the singularity at r = 1
a

to the second

singularity at r = − 1
a

and hence the latter can be regarded as unphysical. In

the Schwarzschild limit, (2.7) becomes RABCDR
ABCD = 48M2/r̃6 (using (2.5))

which is the standard 4-D general relativistic value. The singularity at r =

1
a

seems to disappear in this limit, but otherwise exists providing there is even the

slightest curvature in the fifth dimension, (ε 6= 0). Thus, (2.7) clearly indicates

a geometrical singularity at r= 1
a

, provided the fifth dimension is significant.

Conversely, the 4-D Schwarzschild limit, (ε, κ, εκ) → (0,∞, 1), has a geo-

metrical singularity at r =− 1
a

(r̃ = 0). However, this is no longer part of the

manifold in the 5-D picture, which ends at r= 1
a

or r̃ = 2M . In other words, the
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horizon of the 4-D solution becomes the centre of the 5-D solution.

2.2 Geodesic Motion

Consider the five geodesic equations,

d2xA

ds2
+ ΓABC

dxB

ds

dxC

ds
= 0

for the interval (2.1):

dṫ

ds
+ 2

A′

A
ṫṙ = 0 (2.8)

dṙ

ds
+
AA′

B2
ṫ2 +

B′

B
ṙ2 −

(
r2B

′

B
+ r

) [
θ̇2 + sin2θ φ̇2

]
− CC ′

B2
ψ̇2 = 0 (2.9)

dθ̇

ds
+ 2

(
B′

B
+

1

r

)
ṙθ̇ − sinθ cosθφ̇2 = 0 (2.10)

dφ̇

ds
+ 2

(
B′

B
+

1

r

)
ṙφ̇+ 2

cosθ

sinθ
θ̇φ̇ = 0 (2.11)

dψ̇

ds
+ 2

C ′

C
ψ̇ṙ = 0 (2.12)

where ṫ ≡ dx0

ds
, ṙ ≡ dx1

ds
, θ̇ ≡ dx2

ds
, φ̇ ≡ dx3

ds
, ψ̇ ≡ dx4

ds
, and A, B and C are defined

in (2.2)-(2.4).

Equations (2.8) and (2.12) are almost trivial to solve. In fact, ṫ, φ̇ and ψ̇ can

be solved by noting that ∂/∂t, ∂/∂φ and ∂/∂ψ are all Killing vectors, ξA, and

therefore constants of motion (w.r.t. s) can be obtained from k(constant) =
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gABξ
A dxB

ds
. Equations (2.10) and (2.11) can be made identical by assuming

θ = f(θ)φ and then solving for f(θ) obtains θ̇. Finally, ṙ can be found by the

consistency relation Ξ = gAB
dxA

ds
dxB

dx
which is obtained by dividing (2.1) by ds2.

The constant Ξ is 1 or 0 for massive or massless particles (respectively). The

resulting velocities are hence:

ṫ =
E

A2
(2.13)

ṙ =
±1

B

√
E2

A2
− WL2

B2r2
− V 2

0

C2
− Ξ (2.14)

θ̇ = sin2θ
√
W − csc2θ φ̇

=
L

B2r2

√
W − csc2θ (2.15)

φ̇ =
L

B2r2
csc2θ (2.16)

ψ̇ =
V0

C2
(2.17)

and can be verified by substituting back into (2.8)-(2.12). The constants E, L,

and V0 are integration constants and constants of motion. The constant W in

(2.14) and (2.15) is another integration constant. Typically, since these solutions

are spherically symmetric and the motion will lie in one plane, it is practice to

first set θ = π/2 and θ̇ = 0 before solving the geodesics ((2.10) will automatically

be satisfied), and so W = 1 in this case.

It is easily seen that ṫ, φ̇ and θ̇ are identical to the standard 4-D general
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relativistic velocities in the Schwarzschild limit. However, ṙ and ψ̇ will still

retain a constant V0; in this limit, ṙ2 is lower than the 4-D general relativistic

value by a factor V 2
0

(
1 + 1

ar

)2
.

There is a bound to ṙ evident from (2.14),

E2 ≥ WL2 A2

B2r2
+ V 2

0

A2

C2
− A2Ξ,

which is to say that a particle cannot be at radius r from the soliton unless

this condition is satisfied. Hence, in order for a particle to escape to infinity,

E2 ≥ V 2
0 + Ξ, which is more energy needed than in the 4-D case where the

condition would be E2 ≥ Ξ.

Figures 2.2, 2.3 and 2.4 depict the energy, ṫ, the radial velocity, ṙ, and the

“psi” velocity, ψ̇, (respectively) of a massive particle (Ξ = 1) falling radially (L =

0) into the soliton (with V0 = .25 and E = 1.25). As in the 4-D Schwarzschild

solution, the energy of the particle diverges at it approaches r= 1
a

, as well as

the radial velocity. The difference, however, is that the divergence occurs at the

event horizon in 4-D and at the origin in 5-D.

The velocities θ̇ and φ̇ are not plotted for they can be made to look identical

to their 4-D Schwarzschild counterparts, providing the transformation (2.5) is

made. Although this would appear to contradict earlier work distinguishing the
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Figure 2.2: Energy of particle, ṫ, as a function of isotropic r
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Figure 2.3: Radial velocity of particle as a function of isotropic r
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Figure 2.4: “Psi” velocity, ψ̇, as a function of isotropic r
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difference between perihelion shift in orbits between 4-D general relativity and

these solitons [17, 21], it does not. The reason is simply that those results are

obtained by looking at du/dφ, where u ≡ 1/r; under the transformation (2.5) θ̇

and φ̇ may look the same as the 4-D case, but ṙ, ṫ and ψ̇ certainly do not take

the same form as their 4-D counterparts.

The “psi” velocity starts initially at V0 at radial infinity and slows to zero as

it approaches the origin for as long as there is the slightest curvature in the fifth

dimension. Only in the Schwarzschild limit, does this velocity remain constant

for all r. The proper size of the fifth dimension itself remains finite near the

origin. To see this, we write dψprop = C(r)dψ and use dψ = dψ
ds

ds
dr
dr =

(
ψ̇/ṙ

)
dr.

Hence,

ψprop =
∫
C
V0

C2ṙ
dr + ψo

ψprop =
∫ V0 dr√

E2C2

A2B2 − WL2C2

B4r2
− V 2

0

B2 − ΞC2

B2

+ ψo, (2.18)

where r ≥ 1/a by the above arguments. This is not analytically solvable for all

(ε, κ), but can be iteratively computed. To do so, the size of ψprop is arbitrarily

assumed at a given r (say r = 1/a). Since (A,B,C)→ (0, 0,∞) as r → 1
a
, it is

easy to see that ψprop(r= 1
a
) = ψo. The minimal size of the fifth dimension is then

determined by the size of the integration constant ψo. Figure 2.5 depicts ψprop
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as a function of proper distance, Rprop =
∫ r
1/aB(r)dr which is also iteratively

calculated (Rprop(r= 1
a
) = 0, ψo = 0, Ξ = 1, L=0, E=1.25 and V0=0.25).

10/a

1

0 10/a
0

1

Proper distance, Rprop

P
ro

pe
r 

5t
h  

D
im

en
si

on
, Ψ

pr
op

k=0.1

k=0.5

k=1

k=2

k→∞

Figure 2.5: Proper size of fifth dimension for a radially travelling particle, ψprop,
as a function of proper distance, Rprop

2.3 Stability of Circular Orbits

For simplicity, we will employ the transformation (2.5) in the limit (ε, κ, εκ)→

(0,∞, 1), namely r̃ = r
(
1 + 1

ar

)2
, for all (ε, κ) and use a = 2

M
. Since 0≤ r<∞
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covers r̃≥2M twice by this transformation, then we will only consider circular

orbits with r̃ ≥ 2M . Under this transformation, (2.1) will take the form

ds2 = Aεκdt2 − A−ε(κ−1)dr̃2 − A1−ε(κ−1)r̃2dΩ2 − A−εdψ2,

with

A ≡ 1− 2M

r̃
,

and equation (2.14) now has the form (θ = π/2, θ̇ = 0)

˙̃r
2

+ Aε(κ−1)Ξ + AεκV 2
0 + A2ε(κ−1)−1L

2

r̃2
− A−εE2 = 0

˙̃r
2

+ f(r̃) = 0. (2.19)

To have circular orbits, both ˙̃r and ¨̃r must vanish at some radius, r̃ = r̃∗, which

corresponds to f(r̃)|r̃∗ = 0 and f ′(r̃)|r̃∗ = 0, where a prime now denotes ∂/∂r̃.

Setting f(r̃) = 0, we obtain

E2 = AεκΞ + Aε(κ+1)V 2
0 + Aε(2κ−1)−1L

2

r̃2
, (2.20)

which can then be substituted into f ′(r̃) to yield

f̃ ′(r̃) =
r̃2

2M
A1−εκf ′(r̃)

= εκA−εΞ + ε(κ+ 1)V 2
0 + Aε(κ−2)−1L

2

r̃2
[ε(2κ− 1) + 1− r̃/M ](2.21)
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Setting (2.21) to zero yields the radius for circular orbits, r̃ = r̃∗, which can then

be substituted into (2.20) to give E = E(Ξ, V0, L).

To check to see if the orbit is stable or unstable at r̃ = r̃∗, a particle is

perturbed radially from r̃∗ by some small amount, r̃ = r̃∗ + δ. Assuming δ ¿ r̃∗

so that O(δ3) terms are insignificant, (2.19) becomes

δ̇2 +
1

2
f ′′(r̃∗)δ2 = 0, (2.22)

and so a stable orbit exists at r̃∗ if f ′′(r̃∗) > 0 since (2.22) would represent

oscillations with angular frequency
√
f ′′(r̃∗)/2. Similarly, if f ′′(r̃∗) < 0 then

(2.22) will be an exponential growth/decay and thus there will be an unstable

orbit at r̃∗.

Solving f ′(r̃) = 0 (or f̃ ′(r̃) = 0) for r̃ in (2.21) is not analytically solvable

for all values of κ (and ε), so finding radii of circular orbits for all values is not

possible. However, it is possible to analytically solve for four cases: massless

particles (Ξ = 0) with V0 = 0, the Schwarzschild limit (κ = ∞), the Chatterjee

case (κ = 1) and the “synchronous” case (κ = 0). These four cases will be stud-

ied in sections 2.3.1 to 2.3.4. Although one cannot solve for r̃∗ and E(Ξ, V0, L)

for all κ, it is possible to infer the behavior of orbits in terms of stability for all

κ. Therefore, sections 2.3.5 and 2.3.6 are devoted to looking at the behavior of
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orbits for 1 < κ <∞ and 0 < κ < 1, respectively.

2.3.1 Massless particles (Ξ = 0) with V0 = 0 for all (ε, κ)

Solving f̃ ′(r̃) = 0 for r̃ in (2.21) and then simplifying (2.20) yields

r̃∗ = [ε(2κ− 1) + 1]M ≡ r̃0, (2.23)

E2 =
L2/M2

[ε(2κ− 1) + 1]2

[
ε(2κ− 1)− 1

ε(2κ− 1) + 1

]ε(2κ−1)−1

, (2.24)

which agrees with previous work [17], and the general relativistic value of r̃∗ =

3M is retrieved in the Schwarzschild limit. For stability, we find that

f ′′(r̃∗) = −2
(
1− 2M

r̃∗

)2[ε(κ−1)−1] L2

r̃4∗
< 0,

and so all these orbits are unstable.

Since the manifold ends at r̃ = 2M , the massless particles with V0 = 0 can

only have circular orbits for κ > 1. It is apparent in sections 2.3.3 and 2.3.4

that massless particles must have some sort of momentum in the fifth dimension,

V0 6= 0, in order to have circular orbits for κ ≤ 1.
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2.3.2 Schwarzschild limit (ε, κ) = (0,∞)

There are two solutions in this limit,

r̃±∗ =
L2

2M(Ξ + V 2
0 )


1±

√
1− 12M2(Ξ + V 2

0 )

L2


 ,

which is identical to the general relativity value for Ξ = 1 and V0 = 0. Like the

4-D Schwarzschild solution, there is a lower limit to the radii of circular orbits,

which is here imposed by L2 > 12M2(Ξ+V 2
0 ). Unlike the 4-D solution, however,

massless particles can have circular orbits at radii other than r̃∗ = 3M . The fact

that L2 > M2(Ξ + V 2
0 ) imposes a lower limit to L or an upper limit to V0. For

any given L, if V0 is too large then no circular orbits will exist.

Letting L2 = 12nM2(Ξ+V 2
0 ) with n ∈ (1,∞), we can parameterize the radii

for circular orbits and the respective energies in terms of n:

r̃±∗ = 6Mnζ (2.25)

E2
± = (Ξ + V 2

0 )
{
1−

[
3nζ2

]−1
+ 2

[
9n2ζ3

]−1
}

=
L2

12nM2

{
1−

[
3nζ2

]−1
+ 2

[
9n2ζ3

]−1
}
, (2.26)

ζ = 1±
√

1− 1

n
.

The two radii have the ranges 3M < r̃−∗ < 6M and r̃+
∗ > 6M . For stability,
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we find that

f ′′(r̃∗) =
2L2

r̃5∗
(r̃∗ − 6M) ,

and so r̃−∗ represents unstable orbits and r̃+
∗ represents stable orbits. Hence,

for V0 6= 0 it is possible for massless particles to have stable circular orbits for

r̃ > 6M and unstable orbits not just at r̃ = 3M as with the 4-D solution.

2.3.3 Chatterjee case (ε, κ) = (1, 1)

The Chatterjee solution is interesting since it sometimes yields the same results

as the Schwarzschild limit because εκ = 1 for both cases. For example, the

energy, ṫ, is identical in both cases, as well as the gravitational mass [22].

However, circular orbits are very much different between the two cases as will

now be demonstrated. The radii and energies of circular orbits in the Chatterjee

vacuum are

r̃∗ = M
4V 2

0 + L2/M2

Ξ + 2V 2
0

(2.27)

E2 =
L2/M2(V 2

0 + Ξ)− Ξ

L2/M2 + 4V 2
0

(2.28)

The orbits are all stable providing that L2/M2 > 2Ξ, which is derived from

f ′′(r̃∗) =
2

M2

(Ξ + 2V 2
0 )4

(4V 2
0 + L2/M2)

2
(L2/M2 − 2Ξ)

.
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With this limit on L, it is easy to see that r̃∗ > 2M . One difference then

between the Chatterjee case and the Schwarzschild limit is that the Chatterjee

case has no unstable circular orbits. Another difference is that the radii of the

stable orbits range the entire manifold except the origin. Furthermore, unlike

the Schwarzschild limit, V0 is not limited in its range; there is no value of L2/M2

over which the value of V 2
0 will destroy the possibility of circular orbits.

2.3.4 “Synchronous” case (ε, κ) = (1, 0)

This limit has been coined “synchronous” here because an observer’s time, t,

differs from proper time, s, only by a constant factor (E), and gtt = 1. As shown

in section 2.3.1, there are no circular orbits for massless particles with V0 = 0

for this case; if there were, they would exist at r̃∗ = 0 which is not part of the

5-D manifold. However, for massive particles (Ξ = 1) or massless particles with

V0 6= 0, we find

r̃∗ = T
1
3
2 − T3 +

1

3
T1 (2.29)

E2 = L2 1 + r̃∗/M
(r̃∗ − 2M)2

+ Ξ, (2.30)
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where

T1 = 2M
(

1

2
L̃2 + 3

)

T2 = 8M3




(
1

6
L̃2 + 1

)3

−
(

1

4
L̃2 + 1

)
+

1

4
L̃2

√
1 +

2

27
L̃2




T3 = −4M2

T
1
3
2

[
1

6
L̃2

(
1

6
L̃2 + 2

)]

L̃ =
L

V0M
.

As L̃→ 0 (L→ 0 or V0 →∞) it may be verified that r̃∗ → 2M . Furthermore,

as L̃ → ∞ (L → ∞ or V0 → 0) then r̃∗ → ∞. If V0 = L/M then r̃ ≈ 4.875M .

The condition for stability for this solution is

f ′′(r̃∗) =
2ML2

(r̃∗ − 2M)5

[
r̃∗
M

+ 4
]
> 0,

and therefore stable orbits are attainable for massless and massive particles at

any radii in the manifold except at the origin. For this reason, and also for the

fact that neither solutions have unstable circular orbits, the Chatterjee case and

the “synchronous” case are very similar. Unlike the Chatterjee case, though,

the radius of circular orbit here does not depend on the particle being massive

or massless.
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2.3.5 Circular Orbits for 1 < κ <∞

For this range in κ, we note that 2 < [x ≡ ε(2κ − 1) + 1] < 3, −2 < [ω ≡

ε(κ− 2)− 1] < 0 and 0 < ε < 1, and thus equation (2.21) becomes

f̃ ′(r̃) = ε(κ+ 1)V 2
0 + F1 + F2

F1 =
εκΞ

(1− 2M/r̃)ε

F2 =
L2 (x− r̃/M)

r̃2 (1− 2M/r̃)|ω|

Now, ε(κ + 1)V 2
0 and F1 are both positive for all r̃ > 2M . As r̃ → 2M ,

F2 → +∞ since x > 2, but F2 → 0− as r̃ → ∞; that is, F2 has one zero

at r̃ = xMr̃0, which agrees with results in section 2.3.1 for Ξ = 0 and V0 = 0.

Furthermore, F2 has a minimum at r̃ = r̃1 ≡ [3ε(κ−1)+1+
√

4− 3ε2κ]M , which

has the range 2M < r̃1 < 6M for k > 1. Also, F ′2|r̃<r̃1 < 0 and F ′2|r̃>r̃1 > 0.

Figure 2.6 depicts the general shape of F2 (for all κ), although the width, depth

and location of the “well” will vary according to the values of L and κ.

If V0 6= 0 or Ξ = 1 it is easy to see that f̃ ′(r̃) → 0+ as r̃ → ∞. Providing

that V0 is not too large, or L2 is not too small, there will be two zeroes for

f̃ ′(r̃). The zero closest to the origin corresponds to the zero of F2, but shifted to

higher r̃, and gives the radius for an unstable orbit, r̃−∗ , since both F ′2|r̃<r̃1 < 0

and F ′1|r̃>2M < 0. The second zero is at the radius of a stable orbit, r̃+
∗ , since
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Figure 2.6: General form of F2, or f̃ ′(r̃) with Ξ = 0 and V0 = 0.

F ′2|r̃>r̃1 > 0 and |F ′2| > |F ′1| for r̃ > r̃1 because |ω| > ε.

If V0 is too large, then f̃ ′(r̃) > 0 for all r̃ > 2M and there will be no circular

orbits. Therefore, V0 has an upper limit V0(max). Similarly, if L is too small

when either V0 6= 0 or Ξ = 1, no orbits will exist either, giving a lower limit to

L, L(min). However, V0(max) and L(min) depend on ε, κ and Ξ, as well as each

other, and may not necessarily be found analytically for all κ.

Suppose V0 = 0 and Ξ = 1, and L = L(min) such that the minimum of f̃ ′(r̃)



Chapter 2. The Solitons 29

corresponds to f̃ ′(r̃) = 0. In this case there would only be one circular orbit,

the radius and L(min) of which would be

r̃ = r̃2 ≡
[
ε(3κ− 2) + 1 +

√
3ε2κ2 − 4ε2κ+ 1

]
M

L2
(min) =

εκ(r̃2/M)ε(κ−1)+1(r̃2/M − 2)1−ε(κ−1)

ε(κ− 1) +
√

3ε2κ2 − 4ε2κ+ 1
M2,

which have ranges 2M < r̃2 < 6M and 2M2 < L2 < 12M2 for 1 < κ < ∞. As

L gets larger the minimum of f̃ ′(r̃) will become negative and there will again be

two radii of circular orbits, r̃+
∗ > r̃2 and xM < r̃−∗ < r̃2.

If Ξ = 0, we’d see that for V 2
0(max), a unique circular orbit will lie at r̃ = r̃1

and

L2 = ε(κ+ 1)V 2
0(max)

(r̃1/M)ε(κ−2)+1(r̃1/M − 2)1−ε(κ−2)

ε(κ− 2) +
√

4− 3ε2κ
M2,

with the range 0 < L2 < 12M2V 2
0(max) for this range in κ. Again, upon increasing

L or decreasing V0, stable orbits would exist at r̃+
∗ > r̃1, and unstable orbits at

r̃0 < r̃−∗ < r̃1.

If V0 6= 0 and Ξ = 1, then when f̃ ′(r̃) = 0 is at the minimum of f̃ ′(r̃), the

only circular orbit will lie at some r̃ between r̃1 and r̃2 since the latter is greater

than the former. Stable orbits will exist at radii greater than this radius and

unstable orbits between this radius and r̃ = xM .

To generalize, for 1 < κ <∞ there are two radii for circular orbits. The inner
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radius (unstable orbit) may only be as small as r̃ = xM , whilst the outer radius

(stable orbit) has a lower limit somewhere between r̃1 and r̃2, depending on Ξ,

V0 and L. Furthermore, by setting V 2
0 too high, or L2 too low, then f̃ ′(r̃) > 0 for

all r̃ > 2M and no circular orbits will exist. Thus, all solitons with 1 < κ <∞

behave similarly to the Schwarzschild case for circular orbits.

2.3.6 Circular Orbits for 0 < κ < 1

For this range in κ, we find that 0 < [x ≡ ε(2κ−1)+1] < 2 so that Mx− r̃ < 0,

−3 < [ω ≡ ε(κ − 2) − 1] < −2 and 1 < ε < 2/
√

3, and so equation (2.21) will

look like

f̃ ′(r̃) = ε(κ+ 1)V 2
0 +

εκΞ

(1− 2M/r)ε
− L2 |x− r̃/M |
r̃2 (1− 2M/r)|ω|

Now, f̃ ′(r̃) → −∞ as r̃ → 2M since |ω| > ε. Furthermore, f ′′(r̃) > 0 for all

r̃ > 2M since the L2 term is the most dominant term for both r̃ → 2M and

r̃ →∞.

If Ξ = 0 and V0 = 0 then f̃ ′(r̃) → 0− as r̃ → ∞ (see figure 2.6) and

will never therefore be zero. Hence, no circular orbits will exist. If Ξ = 1 or

V0 6= 0, then f̃ ′(r̃) → 0+ as r̃ →∞ and so f̃ ′(r̃) will have one zero corresponding
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to a radius having a stable circular orbit. Hence, like the Chatterjee case and

the “synchronous” case, there are no circular orbits for massless particles with

V0 = 0; otherwise there are stable circular orbits for all r̃ > 2M . In this range

of κ, V0 has no upper bound limiting circular orbits; as V0 gets larger, the radii

for circular orbits approaches r∗ = 2M .



Chapter 3

Isotrope Solutions

3.1 Static, Inhomogeneous Isothermal Solutions

We next seek to find a five-dimensional analogue to the four-dimensional static,

inhomogeneous isothermal solutions that was developed by Henriksen and Wes-

son [23, 24], described by the line interval

ds2 = r
4po

po+ηo dt2 − dr2

1− ηo
− r2dΩ2. (3.1)

The density and pressure of the fluid described by (3.1) is, respectively,

ρ = ηo/r
2 and p = po/r

2, and to ensure that the fluid remains static (r̈ = 0)

there is a consistency relationship between ηo and po: 4po(1 − ηo) = (po + ηo)
2.

For physical reasons, the parameter ηo is limited to 0 ≤ ηo ≤ 1
2

which then limits

32
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po to 0 ≤ po ≤ 1
2
. This solution has astrophysical importance since the density

and pressure relationships above are those approached by many rich clusters of

galaxies.

In the induced matter scenario, it would be useful to find a five-dimensional

analogue which would appear to be a vacuum in five dimensions, but would

give a fluid of pressure and density proportional to r−2 in four dimensions.

Furthermore, it has been previously shown [9] that in the induced matter theory,

any metric that is solely dependent on the radial co-ordinate will only produce

a radiation equation of state, ρ = 3p. Therefore, in order to obtain a class

of solutions with equations of state other than radiation, the metric must be

dependent on the extra coordinate, ψ (the metric could also depend on the time

coordinate, t, but the fluid here should be static and hence independent of time).

Thus, the five-dimensional metric found that satisfies these criteria is

ds2 =
(
r

ro

)2(α+1)

ψ2(1+3/α)dt2 − (3− α2)ψ2dr2 − r2ψ2 dΩ2

+
3

α2
(3− α2) r2dψ2, (3.2)

which, on hypersurfaces of ψ, can be made to look similar to (3.1). From

dimensional arguments, if we say that r has units of length, then ψ must be
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unitless (i.e. multiplied by the appropriate constants to be unitless). Hence,

the constant r2(α+1)
o is placed in the dt2 term to render gtt unitless. We could

have easily written ro = 8πGM/c2 ≡ M where M is a constant with units of

mass. This “juggling” of units is useful later in this section when the induced

gravitational mass is calculated.

In general, if we write g44 = gψψ = εΦ2, where ε = ±1, and assume gα4 = 0

then the effective energy-momentum tensor is [9]

Tαβ =
Φα;β

Φ
− ε

2Φ2





∗
Φ

∗
gαβ
Φ

− ∗∗
gαβ +gµν

∗
gαµ

∗
gβν

−g
µν ∗
gµν

∗
gαβ

2
+
gαβ
4

[ ∗
gµν

∗
gµν +

(
gµν

∗
gµν

)2
]

 . (3.3)

The semi-colon represents the usual (3+1) covariant derivative, Φα = ∂Φ/∂xα

and an overstar represents ∂/∂ψ.

For (3.2) the four non-zero components of (3.3) in mixed form (i.e. T αβ ) are

T tt =
2− α2

(3− α2)ψ2r2

T rr = − α(α+ 2)

(3− α2)ψ2r2

T θθ = − (α + 1)2

(3− α2)ψ2r2
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T φφ = T θθ . (3.4)

Using the convention used in [19], we associate the density with T tt and the

pressure with −1
3
(T rr + T θθ + T φφ ) to yield

ρ =
2− α2

(3− α2)ψ2r2
(3.5)

p =
α2 + 2α + 2/3

(3− α2)ψ2r2
. (3.6)

From whence it follows that we have an isothermal equation of state, p = (α2 +

2α + 2/3)/(2− α2) ρ.

Figure 3.1 clearly illustrates how these istropes differ from their 4-D coun-

terparts in several ways. First, because of the consistency relationship with

po and ηo in (3.1), the pressure and density in the (3+1) theory are always

positive. For (3.5) and (3.6), ρ remains positive for −√2 < α <
√

2 (which

physically restricts α), but p is negative for α < −1 + 1/
√

3 ≈ −0.42. Hence,

the five-dimensional case is richer in that it involves many more equations of

state, including that of dust, p = 0 with ρ 6= 0. For (3.1), p = 0 only when ρ = 0

and the metric is flat and devoid of matter. For α2 ≤ 2, we find other equations

of state, such as radiation (ρ = 3p) at α = 0, stiff (ρ = p) at α =
√

11
12
− 1

2
≈ 0.46

and vacuum (ρ = −p) at α = −4
3
. However, we will now show that α > −1

which then excludes the vacuum solution.
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Figure 3.1: Ratio of pressure to density, p/ρ, for 4-D and 5-D models.

We can calculate the gravitational mass of the fluid, Mg, using the standard

(3+1) definition [25, 26]:

Mg(r, ψ) ≡
∫

(T 0
0 − T 1

1 − T 2
2 − T 3

3 )
√−g4 dV3

=
8π(α+ 1)√

3− α2
ψ2+3/α

(
r

ro

)2+α

ro, (3.7)

where g4 is the determinant of the four-dimensional part of the metric. If we

were to restore full units, then the last constant in (3.7) would read c2ro
8πG

which
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has units of mass (again, we could write c2ro
8πG

= M). The 4-D mass defined in

[23] differs from (3.7) since the former’s dependence on radial distance is strictly

linear. However, their definition of mass was different from (3.7). Applying the

definition in (3.7) to (3.1), one would obtain

(4)Mg(r) = 8π
√
po r

( 2po
po+ηo

+1),

which is then analogous to (3.7).

It is apparent from (3.7) that α ≥ −1 in order that the mass remains positive.

Therefore equations of state p < −ρ/3 are not permitted in these solutions. The

radiation solution must be ruled out as well, since there is a divergence in the

metric when α = 0. However, this would appear to be an artifact since invariants

such as the Kretschmann scalar,

RabcdRabcd =
16

3ψ4r4
, (3.8)

reveal no singularity at α = 0, although they are not well behaved at ψ = 0 and

r = 0. However, although the density and pressure are well behaved at α = 0

it is evident that the gravitational mass may diverge. As α → 0−, Mg → 0 for

ψ > 1, but diverges for ψ < 1. Conversely, as α → 0+, Mg → 0 for ψ < 1,

but diverges for ψ > 1. So, it is possible to infer the behavior of Mg as the
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radiation equation is approached, but α = 0 must remain an unphysical case in

this solution. This is not too severe of a restriction since (3.2) is being used to

describe systems such as clusters of galaxies which are not generally described

by a radiation equation of state.

3.2 Geodesic Motion

The motion of a particle in a manifold described by (3.2) is governed by the five

geodesic equations:

ẗ = −2
(α+ 1)

r
ṫṙ − 2

(1 + 3/α)

ψ
ṫψ̇ (3.9)

r̈ = − (α + 1)

(3− α2)rψ2

(
r

ro

)2(α+1)

ψ2(1+3/a) ṫ2 +
r

3− α2

(
θ̇2 + sin2θφ̇2

)

−2
ṙψ̇

ψ
− 3

α2

rψ̇2

ψ2
(3.10)

θ̈ = −2
ṙθ̇

r
− 2

ψ̇θ̇

ψ
+ sinθ cosθφ̇2 (3.11)

φ̈ = −2
ṙφ̇

r
− 2

ψ̇φ̇

ψ
− 2

cosθ

sinθ
θ̇φ̇ (3.12)

ψ̈ =
α2

3

(1 + α/3)

(3− α2)r2ψ

(
r

ro

)2(α+1)

ψ2(1+3/a) ṫ2 − α2

3

ψ

3− α2

(
θ̇2 + sin2θφ̇2

)

−2
ṙψ̇

r
− α2

3

ψṙ2

r2
(3.13)

where, again, an overdot represents d/ds, with s as a proper time for massive
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particles and some other affine parameter for photons. Using similar Killing

vector arguments as chapter 2, equations (3.9) and (3.12) are easy to solve to

obtain ṫ and φ̇. Similarly, θ̇ can be obtained using the exact same method as in

chapter 2. The three velocities are hence,

ṫ = E
(
r

ro

)−2(1+α)

ψ−2(1+3/α) (3.14)

θ̇ =
L

r2ψ2

√
W − csc2θ (3.15)

φ̇ =
L

r2ψ2 sin2θ
. (3.16)

The constant L is associated with the angular momentum of the particle and

E has units of energy (per unit rest mass for massive particles). Like the soliton

solution, if the particle is in the θ = π/2 plane with θ̇ = 0, it will remain there,

and so W = 1 in that instance. The energy of the particle, ṫ, does not depend

on r for α = −1, which corresponds to Mg = 0 in the induced matter picture,

and decreases with increasing r for other values of α. This is consistent with the

(3+1) solution where

(4)ṫ = E r
−4po

po+ηo .

For −1 ≤ α < 0, ṫ increases with increasing ψ, but decreases with increasing ψ

for 0 < α ≤ √
2.
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Solving for ṙ and ψ̇ is not quit so easy as the other velocities, although one

can also use the equation

Ξ = gAB
dxA

ds

dxB

ds
, (3.17)

which is obtained by dividing (3.2) by ds2. One velocity is then obtained by

solving either (3.10) or (3.13), and the other is directly obtained through (3.17)

(Ξ = 0 for massless particles and Ξ = 1 for massive particles). Even so, it

is difficult to solve for ṙ and ψ̇ in this co-ordinate system, and so it is more

convenient to use the system

R =

√
3

2

{
Cψ(1+

√
3/α) r(1+α/

√
3) +

1

C
ψ(1−√3/α) r(1−α/√3)

}

Ψ =

√
3

2

{
Cψ(1+

√
3/α) r(1+α/

√
3) − 1

C
ψ(1−√3/α) r(1−α/√3)

}
, (3.18)

where,

C =

(√
3− α√
3 + α

)√3

.

In this system, (3.2) becomes

ds2 =
A

3C
(R + Ψ)1+

√
3(R−Ψ)1−√3 dt2 − dR2 − R2 −Ψ2

3
dΩ2 + dΨ2, (3.19)
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where A = r−2(1+α)
o . Equations (3.14)-(3.16) become

ṫ = E
3C

A
(R + Ψ)−1−√3(R−Ψ)−1+

√
3 (3.20)

θ̇ =
3L

R2 −Ψ2

√
W − csc2θ (3.21)

φ̇ =
3L

R2 −Ψ2
csc2θ, (3.22)

and equations (3.10), (3.13) and (3.17) are replaced with (after substitution with

ṫ, θ̇ and φ̇),

R̈ = −3C

A

E2 (R−√3Ψ)

(R + Ψ)2+
√

3 (R−Ψ)2−√3
+

3WL2R

(R2 −Ψ2)2
(3.23)

Ψ̈ = −3C

A

E2(
√

3R−Ψ)

(R + Ψ)2+
√

3 (R−Ψ)2−√3
+

3WL2Ψ

(R2 −Ψ2)2
(3.24)

Ṙ2 − Ψ̇2 =
3C

A

E2

(R + Ψ)1+
√

3 (R−Ψ)1−√3
− 3W L2

R2 −Ψ2
− Ξ. (3.25)

This system is better since there are no cross terms in the differential equations

((3.23) and (3.24)) as there were before. However, one further simplification

can be made, which is to let u = R + Ψ and v = R − Ψ. From this, the three

equations to solve are

vü = −3C

A

E2 (1−√3)

u1+
√

3 v1−√3
+

3WL2

uv
(3.26)
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uv̈ = −3C

A

E2 (1 +
√

3)

u1+
√

3 v1−√3
+

3WL2

uv
(3.27)

u̇v̇ =
3C

A

E2

u1+
√

3 v1−√3
− 3WL2

uv
− Ξ. (3.28)

Adding (3.26) and (3.27) and then substituting in (3.28) finally yields the result,

(uv)̈ = −2Ξ

uv = −Ξ s2 + 2 k1 s + k2. (3.29)

Hence, the parameter s can be arranged in terms of uv and then u̇ and

v̇ can then be found in terms of u and v. The inverse transformations can

then be performed to obtain ṙ and ψ̇. A note should first be made about the

nature of k1 and k2. It is easy to show that indeed uv = 3r2ψ2, and so (uv)̈

is the same as (3r2ψ2)̈ , etc. Suppose a particle starts initially (s = 0) at ri

and ψi. Then from (3.29) it is apparent that k2 = 3r2
iψ

2
i , i.e. three times the

product of the initial squared positions in r and ψ. Similarly, k1 is defined as

k1 = 3
2
(r2ψ2)̇i = 3riψi(riψ̇i + ψiṙi). For ease in notation, however, the two

constants will be redefined, so the velocities can be written

ṙ =
±1

(3− α2)rψ2

(√
B1 +

α√
3

√
B2

)
(3.30)
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ψ̇ =
∓α√

3(3− α2)r2ψ

(
α√
3

√
B1 +

√
B2

)
, (3.31)

where

B1 = k2
1 + Ξ k2 − 3Ξr2ψ2

B2 = k2
1 + Ξ k2 − 3E2 r2

o

(
r

ro

)−2α

ψ−6/α + 3W L2.

Of course, the square roots limit where a particle can be in the manifold.

In particular, a particle can be at position (r, ψ) in the manifold, only if the

conditions

k2
1 + Ξk2

2 ≥ 3Ξ r2 ψ2

k2
1 + Ξk2

2 ≥ 3E2 r2
o

(
r

ro

)−2α

ψ−6/α − 3W L2

are satisfied. The first condition is automatically satisfied for photons (Ξ = 0).

The second condition implies two things. For α < 0 a particle may start near

the origin (with a very large velocity), but cannot escape to spatial infinity. For

α > 0 a particle may escape to infinity but cannot approach the origin. For

α = 0 the second condition is divergent due to the ψ term.

In future work, these solutions will be used in 5-D gravitational lens compu-

tations. Previously, such calculations were performed using the soliton metric

[17] but this is a poor approximation to clusters of galaxies, and the isotrope
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solution studied in this chapter is superior.



Chapter 4

Vacuum Waves

4.1 Cosmological Models from Flat Space-times

In this chapter all metrics are flat. However, various cosmological models can

be obtained by performing co-ordinate transformations and then viewing the

metric along hypersurfaces of x4 = constant. Although the main focus here is

to examine one particular solution which gives an equation of state for a vacuum,

we will first briefly take a look at a class of solutions that have been studied in

detail.

We begin with a five-dimensional, “Minkowski” metric,

ds2 = dT 2 − (dR2 + R2 dΩ2) − dΨ2.

Although the signature of the fifth co-ordinate is spacelike , it could easily be

45
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timelike here. In the co-ordinate transformations to follow, Ψ would be replaced

with iΨ if a timelike co-ordinate is preferred. However, in the metrics that

follow, the signature of the extra co-ordinate shown is necessary for that metric

(i.e. changing the signature would render the metric no longer flat). In some

cases, the signature can be changed, but the physical meaning of the metric

changes as well.

We first find that the transformation

T =
α

2

(
t

1
αψ

1
1−α

) [
1 +

(
r

α

)2
]
− α

2(1− 2α)

(
t−1ψ

α
1−α

) 1−2α
α

Ψ =
α

2

(
t

1
αψ

1
1−α

) [
1−

(
r

α

)2
]

+
α

2(1− 2α)

(
t−1ψ

α
1−α

) 1−2α
α

R = r t
1
α ψ

1
1−α (4.1)

renders the “Minkowski” metric into the form

ds2 = ψ2 dt2 − t
2
αψ

2
1−α

(
dr2 + r2 dΩ2

)
− α2(1− α)−2 t2 dψ2, (4.2)

which has been studied in depth [28, 29]. In the induced matter theory, this

metric describes a (3+1) fluid with density and pressure relations

ρ =
3

α2t2ψ2
, p =

(2α− 3)

α2t2ψ2
, p =

(2α− 3)

3
ρ. (4.3)

On hypersurfaces ψ = constant, (4.2) reduces to the standard Friedmann-

Robertson-Walker (FRW) metric with a flat 3-D spatial section and hence is
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relevant cosmologically. For α = 2, the fluid has an expansion factor propor-

tional to t
1
2 and is descriptive of the early universe (p = ρ/3). For α = 3/2,

the expansion factor is proportional to t
2
3 and the metric is descriptive of the

late universe (p = 0). However, the vacuum equation of state (p = −ρ) is not

well described by this metric since α = 0 leads to a divergence in the spatial

component of (4.2).

To find a cosmological metric with such an equation of state, we once again

return to the “Minkowski” metric and find that the transformation

T =
2ψ

ω

[
sin(

1

2
ωt)± iω2r2

8
e±iωt/2

]

Ψ = ∓2iψ

ω

[
cos(

1

2
ωt) +

ω2r2

8
e±iωt/2

]

R = rψe±iωt/2, (4.4)

gives the metric

ds2 = ψ2 dt2 − ψ2e±iωt(dr2 + r2dΩ2) +
4

ω2
dψ2

ds2 = ψ2 dt2 − ψ2e±iωt(dx2 + dy2 + dz2) +
4

ω2
dψ2. (4.5)

Actually, this metric was first found without using the transformation (4.4),

and each spatial component of the metric contained a spatial wave as well (e.g.

gxx = −ψ2e±i(ωt+kxx), etc.). However, it became apparent that the wavenumber
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portion of the metric was insignificant when it came to examining the induced

density and pressure (the components of T µν do not differ). Furthermore, it did

not affect the fact that RAB = 0 and RABCD = 0. Therefore, in this section

we shall leave the metric in the isotropic form of (4.5). Where the difference

comes into play is when geodesic motion is considered, and both metrics will be

examined at that point.

That there are imaginary variables in the metric may seem to be disconcert-

ing at first, although there have been previous studies using complex metrics

[30, 31]. One can transform away any complex wavenumber portion (kx, etc.),

and one can also make the angular frequency imaginary to make the metric real,

though this would change the physical interpretation of the metric (see below).

However, even with a complex metric we find that the physical properties, such

as density and pressure, are indeed real, as will now be shown.

For (4.5), the components of the induced energy-momentum tensor are

T tt = T xx = T yy = T zz = −3ω2

4ψ2
. (4.6)

As in chapter 3, taking ρ = T tt and p = −1
3
(T xx + T yy + T zz ), the density and

pressure of the fluid are

p = −ρ =
3ω2

4ψ2
. (4.7)
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The equation of state is clearly that of a vacuum. We see that ordinary 3-space

has a wave-like behavior, as well as the particles in the manifold (as will be

shown in section 4.2), but the associated medium is an unperturbed vacuum.

Hence, we feel it is appropriate to refer to this solution as vacuum waves.

In order for the metric to be flat, the signature of the ψ co-ordinate in (4.5)

must be timelike, but it is also possible for it to be spacelike. If ω were to

be imaginary, −iω, then the signature of gψψ in (4.5) would reverse and the

oscillation would become an exponential growth or decay, depending on the sign

used. If the upper sign (+) in the exponential terms is used, then the metric,

upon hypersurfaces ψ = constant, looks like a de Sitter inflationary model with

a positive cosmological constant, Λ = 3ω2/4ψ2. In its present form (ω real), the

model is still a vacuum, only the spacetime is oscillating instead of inflating and

the cosmological constant is negative.

Therefore, we could imagine the universe at a very early stage oscillating

with a frequency ω/2π. At a later time, ω becomes imaginary and (4.5) becomes

inflationary. This is similar to other big-bang scenarios where the big bang is

interpreted as a quantum-induced phase change [32, 33, 34]. In the inflationary

mode, we note that the signature of gψψ is the same as the other 5-D cosmological

models described by (4.2).
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Although is may seem odd that the physics depends on the co-ordinate frame

chosen, there is a similar phenomenon in (3+1) cosmology. Here we have a

covariant 5-D system which contains physical quantities defined in 4-D. In the

(3+1) standard FRW models it is common to employ comoving co-ordinates

where ẋ = ẏ = ż = 0. In this system, galaxies are static and there is no

big bang. However, it is generally believed that galaxies are separating due

to a universal expansion which is described in a non-comoving frame. The

physical interpretation between the two frames is very different although both

are perfectly valid in the 4-D theory. Here the theory is covariant in 5-D, but

the 4-D cosmological models depend on the choice of co-ordinates used.

4.2 Geodesic Motion

In this section, for notation purposes, the upper sign (+) in the exponential of

(4.5) will be used. The five geodesic equations for (4.5) are

ẗ = − 2

ψ
ṫψ̇ − i

2
ωeiωt

[
ẋ2 + ẏ2 + ż2

]
(4.8)

ẍ = −
(
iωṫ+

2

ψ
ψ̇

)
ẋ (4.9)

ÿ = −
(
iωṫ+

2

ψ
ψ̇

)
ẏ (4.10)
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z̈ = −
(
iωṫ+

2

ψ
ψ̇

)
ż (4.11)

ψ̈ =
1

4
ω2ψ ṫ2 − 1

4
ω2ψeiωt

[
ẋ2 + ẏ2 + ż2

]
. (4.12)

The spatial velocities are easily integrated from (4.9)-(4.11) and are

ẋ = Ax
e−iωt

ψ2
, etc. (4.13)

Here, Ax is an integration constant. The velocities ẏ and ż have the same

form as ẋ but with different integration constants. Like the metric, particles

in the manifold will be oscillating as well. However, when ω → −iω, then the

metric is in an inflationary expansion but a particle’s velocity components are

exponentially decaying. Of course, in either case we could have a static 3-D

spatial section by setting Ax = Ay = Az = 0.

The energy, ṫ, was obtained by assuming ṫ = V0/ψ
2 + fx(t, x)ẋ+ fy(t, y)ẏ +

fz(t, z)ż and then solving for fx etc. Hence,

ṫ =
1

ψ2
(V0 − Vxx− Vyy − Vzz) (4.14)

where Vx = iω
2
ÃxAx, etc and Ãx is an integration constant established from the

differential equations involving fx, etc. If there is no motion in the spatial portion

(Ax = 0, etc) then the system can be considered “comoving” on hypersurfaces

of ψ = constant.
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Finally, a particle’s velocity in the extra dimension can be obtained from,

Ξ = ψ2 ṫ2 − ψ2eiωt(ẋ2 + ẏ2 + ż2) +
4

ω2
ψ̇2,

where again Ξ is 1 for massive particles and 0 for massless particles. The velocity

is hence

ψ̇ = ±ω
2

[
Ξ +

A2

ψ2
e−iωt − 1

ψ2
(V0 − Vxx− Vyy − Vzz)

2

] 1
2

, (4.15)

with A2 = A2
x + A2

y + A2
z.

As mentioned in the previous section, the metric (4.5) had been studied

originally in the form

ds2 = ψ2 dt2 − ψ2eiωt(eikXXdX2 + eikY Y dY 2 + eikZZdZ2) +
4

ω2
dψ2. (4.16)

The difference between the two metrics manifests itself mostly in the geodesic

motion. It is not necessary to recalculate the velocities from the new geodesic

equations, but rather derive them from Ẋ ≡ dX/ds = ∂X
∂x

dx
ds

, etc. Noting that

x = 2
ikX

e
1
2
ikXX , etc, the new geodesic velocities are

ṫ =
1

ψ2

(
V0 − VXe

1
2
ikXX − VY e

1
2
ikY Y − VZe

1
2
ikZZ

)
(4.17)

Ẋ =
Ax
ψ2
e−i(ωt+

1
2
kXX) (4.18)
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Ẏ =
Ay
ψ2
e−i(ωt+

1
2
kY Y ) (4.19)

Ż =
Az
ψ2
e−i(ωt+

1
2
kZZ) (4.20)

ψ̇ = ±ω
2

[
Ξ + A2e−iωt (4.21)

− 1

ψ2

(
V0 − VXe

1
2
ikXX − VY e

1
2
ikY Y − VZe

1
2
ikZZ

)2
] 1

2

, (4.22)

where now VX = ω
kX
Ax, etc. Here we find that particles in the manifold also have

spatial oscillations. Again, if we let ω → −iω then during the inflationary phase,

particles may oscillate in space anisotropically, but with a temporal damping due

to the e−ωt term. We hope to investigate whether oscillating charged particles

in the de Sitter vacuum of the early universe could have generated the 3K

microwave background.



Chapter 5

Conclusions

We began with examining the five-dimensional analogue of the Schwarzschild

metric, modelling stellar sized objects, which is a class of solutions parameterized

by two constants, ε and κ, which are restricted through ε2(κ2−κ+1) = 1, κ ≥ 0

and ε ≥ 0. The entire class, save one, lacks an event horizon, and we find that

the centre can be defined to be at the conventional (3+1) event horizon. Further

to strengthen this definition, we find that there exists a real scalar singularity at

this point, physically restricting the manifold to outside this limit. The energy

and velocities of a particle approaching this limit (r̃ = 2M) diverge, whilst the

velocity in the extra dimension slows to zero. The extra dimension itself has

some fundamental length, ψo, at the origin and gets larger as one moves away

from the spatial origin.

54
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Previous work [17] has shown it possible to physically measure ε and κ and

hence the effect of the extra dimension. In examining circular orbits, we find

that not only do ε and κ play an important role in the physics, but also by a

test particle’s velocity in the extra dimension. This velocity is characterized by

the integration constant V0 of (2.17).

First we consider a substantial section of these class of objects, from the

Schwarzschild limit (κ→∞) up to, but not including, the Chatterjee case (κ =

1). Here, massless particles with V0 = 0 have one unstable circular orbit at

radius r̃0 = [ε(2κ − 1) + 1]M , where 2M < r̃0 ≤ 3M . Too large of a velocity

in the fifth dimension makes it impossible for a particle, massless or massive, to

have a circular orbit. The same is true if the angular momentum constant, L, is

too small. At this extremum there is only one radius, r̃∗, in the manifold where

a circular orbit can exist (the orbit is unstable). This radius lies in the range

of r̃1 ≤ r̃∗ ≤ r̃2, where r̃1 ≡ [3ε(κ − 1) + 1 +
√

4− 3ε2κ]M ∈ (2M, 6M ] and

r̃2 ≡ [ε(3κ−2)+1+
√

3ε2κ2 − 4ε2κ+ 1]M ∈ (2M, 6M ], depending on the values

of V0, Ξ and L (r̃1 < r̃2 except in the Schwarzschild limit where r̃1 = r̃2 = 6M).

Massless particles with V0 6= 0 have circular orbits similar to massive particles;

both have stable orbits at radii r̃ > r̃∗ and unstable orbits at radii r̃0 < r̃ < r̃∗.

The rest of the class of solutions (from Chatterjee, κ = 1, to “synchronous”,
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κ = 0) behave quite differently. First, there are no unstable orbits. Massless

particles do not have circular orbits unless V0 6= 0, in which case the orbit is

stable. Secondly, the circular orbits can exist at any radii in the manifold except,

of course, at the origin, r̃ = 2M . This offers a unique difference between the

Schwarzschild case and the Chatterjee case where in both situations εκ = 1

and so some of their features are indistinguishable (e.g. particle energy, ṫ, and

gravitational mass).

We next move onto larger scales and discover a metric that is a vacuum in

five dimensions, but appears to give density and pressure profiles proportional to

r−2 in four dimensions. The matter described is that of a inhomogeneous, static,

isothermal cloud of matter, which is a good working model of many rich clusters

of galaxies and superclusters. The system is parameterized by a constant α,

which gives rise to various equations of state, p = α2+2α+2/3
2−α2 ρ, including dust

with ρ 6= 0, which cannot be found in the four-dimensional analogue.

The “induced” gravitational mass is proportional to ψ2+3/α and to r2+α. The

density and mass physically restrict α to the range [−1, 0) ∪ (0,
√

2], but this

restriction still allows for solutions of positive density and negative pressure,

which does not occur in the four-dimensional case. We find that, except for

α = −1, a particle’s energy drops to zero at spatial infinity.
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Finally, on the largest scale, we discover a solution which has an oscillatory

spatial portion with angular frequency ω. Upon examining the induced pressure

and density, we find the metric describes an unperturbed de Sitter vacuum, and

hence the solution can be called vacuum waves. If ω→−iω, then the metric

looks like an inflating de Sitter model on hypersurfaces of ψ = constant. This

metric is complimentary to that studied by Ponce de Leon and Wesson [28, 29],

where the (4+1) metric can describe the universe at several epochs, but fails to

incorporate an inflationary stage due to divergences in the metric.

For both metrics, it is possible to find a coordinate transformation that

reduces the metric to a flat “Minkowski” one. This means that, in the right

coordinates, cosmology is simpler in 5-D than in 4-D.

¨̂



Appendix A

Christoffel Symbols and

Riemann Tensor Components

For the solitons, the Christoffel symbols of the second kind for (2.1) are as

follows:

Γttr =
A′

A
Γψψr =

C ′

C

Γrtt =
AA′

B2
Γrrr =

B′

B

Γrψψ = −CC
′

B2

Γrθθ = −r
2BB′ + rB2

B2
Γrφφ = Γrθθ sin2θ

Γθθr = Γφφr =
r2BB′ + rB2

r2B2

Γθφφ = − sinθ cosθ Γφφθ =
sinθ

cosθ
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where A, B and C are defined in (2.2)-(2.4) and A′ ≡ ∂A/∂r etc. For this par-

ticular metric, there are 10 independent, non-zero Riemann tensor components:

Rrtrt = (A′′B − A′B′)
A

B

Rtθtθ =
rAA′

B
(rB′ +B) =

1

sin2θ
Rtφtφ

Rtψtψ =
AA′CC ′

B2

Rrθrθ = r2(B′)2 − rBB′ − r2BB′′ =
1

sin2θ
Rrφrφ

Rrψrψ = −(C ′′B −B′C ′)
C

B

Rθφθφ = −r2 sin2θB′(r2B′ + 2rB)

Rθψθψ = −rCC
′

B
(rB′ +B) =

1

sin2θ
Rφψφψ

For the isotrope solutions, the Christoffel symbols for (3.2) are:

Γtrt = (1 + α)/r Γtψt = (1 + 3/α)/ψ

Γrtt =
(
r

ro

)2(1+α)

ψ2(1+3/α) (1 + α)

(3− α2)ψ2r

Γrrψ =
1

ψ
Γrψψ =

3r

α2ψ2

Γrθθ = − r

3− α2
Γrφφ = Γrθθ sin2θ

Γθrθ = Γφrφ =
1

r
Γθψθ = Γφψφ =

1

ψ

Γθφφ = − sinθ cosθ Γφφθ =
sinθ

cosθ

Γψtt = −α
2

3

(
r

ro

)2(1+α)

ψ2(1+3/α) (1 + 3/α)

(3− α2)ψr2
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Γψrψ =
1

r
Γψrr =

α2ψ

3r2

Γψθθ =
α2ψ

3(3− α2)
Γψφφ = Γψθθ sin2θ

After the co-ordinate transformation (3.18) the Christoffel symbols for (3.19)

are:

ΓttR =
R−√3Ψ

R2 −Ψ2
ΓttΨ

√
3R−Ψ

R2 −Ψ2

ΓRtt =
A

3C
(R−

√
3Ψ)

(
R + Ψ

R−Ψ

)√3

ΓRθθ = −R/3

ΓRφφ = sin2θΓRθθ

ΓθRθ = ΓφRφ =
R

R2 −Ψ2
ΓθΨθ = ΓφΨφ = − Ψ

R2 −Ψ2

Γθφφ = − cosθ sinθ Γφθφ =
cosθ

sinθ

ΓΨ
tt = − A

3C
(
√

3R−Ψ)
(
R + Ψ

R−Ψ

)√3

ΓΨ
θθ = −Ψ/3

ΓΨ
φφ = sin2θΓΨ

θθ

For the vacuum solution, (4.5), the Christoffel symbols are

Γtxx = Γtyy = Γtzz =
iω

2
eiωt Γttψ = 1/ψ

Γxtx = Γyty = Γztz =
iω

2
Γxψx = Γyψy = Γzψz = 1/ψ

Γψtt = −ω
2ψ

4
Γψxx = Γψyy = Γψzz =

ω2ψ

4
eiωt.

The Christoffel symbols for the anisotropic version of the vacuum waves,
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(4.16), are

ΓtXX =
iω

2
ei(ωt+kXX) (etc.) Γttψ = 1/ψ

ΓXtX = ΓYtY = ΓZtZ =
iω

2
ΓXψX = ΓYψY = ΓZψZ = 1/ψ

ΓXXX =
ikX
2

(etc.)

Γψtt = −ω
2ψ

4
ΓψXX =

ω2ψ

4
ei(ωt+kXX) (etc.).



Appendix B

Subroutines Written for MapleV

The following set of subroutines are written in conjuction with Maple V software.

Particularly, it is to be used with the tensor library (or GRTensor library supplied

by Kayll Lake at Queen’s University). In Maple V, this file is read using the

command “read mapadd;”. After having done this, the file first calls up Maple

V’s library “tensor” in case the library hasn’t already been called. Afterwhich

it will list all the available subroutines that are in the file. Any procedure

desired to be used is then called up by typing its name followed by an empty set

of parentheses. For example, to use the subroutine addoneD, one would type

“addoneD();”. The file mapadd can be found on a 3.5′′ floppy at the end of the

thesis.

######################################################################
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#
# File mapadd is used in MapleV by using the command read mapadd;
# The file first calls MapleV’s library tensor and then defines new
# subroutines to be used with tensor.
#
######################################################################
readlib(tensor):
#
# addoneD() adds one extra dimension to the metric, Ndim=Ndim+1, and
# makes sure all the new off diagonal terms is zero
#
addoneD := proc () local i; global x1,x2,x3,x4,x5,g11,g22,g33,
g44,Ndim; option ‘Copyright 1994 by APB‘;
if Ndim=4 then Minkowski(); fi;
Ndim:=Ndim+1;x5:=Y:
for i from 1 to Ndim-1 do: g.i.Ndim:=0:g.Ndim.i:=0: od;
NULL end;
#
# cartesian() makes sure the first coordinate is time (in the tensor
# library time is the 4th coordinate) and then makes the subsequent
# three coordinates x, y and z (the 3-space metric components are
# flat)
#
cartesian:=proc() global x1,x2,x3,x4,g22,g33,g44; option ‘Copyright

1994 by APB‘;
x1:=t:x2:=x:x3:=y:x4:=z:
g22:=-1:g33:=-1:g44:=-1:
NULL end;
#
# display2() acts the same way as display in tensor, except the
# indices are written as the coordinates and not numbers. i.e. gtt
# instead of g11.
#
display2 := proc (a) local i, j, k, l, t, z, s; option ‘Copyright 1994
by APB‘;
if nargs = 0 then
display2(dimension); display2(coordinates); display2(metric);
display2(detmetric); display2(invmetric); display2(Christoffel1);
display2(Christoffel2); display2(Riemann); display2(Ricci);
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display2(Ricciscalar);display2(Kretchmann); display2(Einstein);
display2(Weyl); RETURN()
fi; z := true;
if a = metric then print(‘covariant metric tensor components‘);
for i to Ndim do for j from i to Ndim do
if g.i.j <> 0 then print(‘ g ‘.(x.i).‘ ‘.(x.j) =g.i.j); z := false fi
od od
elif a = invmetric then print(‘contravariant metric tensor
components‘);
for i to Ndim do for j from i to Ndim do
if h.i.j <> 0 then print(‘ h ‘.(x.i).‘ ‘.(x.j) = h.i.j); z := false fi
od od
elif a = induced then print(‘covariant components of induced energy
momemtum tensor‘);
for i to 4 do for j from i to 4 do
if T.i.j <> 0 then print(‘ T ‘.(x.i).‘ ‘.(x.j) = T.i.j); z := false fi
od od
elif a = Ricci then print(‘covariant Ricci tensor components‘);
for i to Ndim do for j from i to Ndim do
if R.i.j <> 0 then print(‘ R ‘.(x.i).‘ ‘.(x.j) = R.i.j); z := false fi
od od
elif a = Einstein then print(‘covariant Einstein tensor components‘);
for i to Ndim do for j from i to Ndim do
if G.i.j <> 0 then print(‘ G ‘.(x.i).‘ ‘.(x.j) = G.i.j); z := false fi
od od
elif a = Christoffel1 then print(‘Christoffel symbols of the first
kind‘);
for i to Ndim do for j from i to Ndim do for k to Ndim do
if c.i.j.k <> 0 then print(‘ c ‘.(x.i).‘ ‘.(x.j).‘ ‘.(x.k) = c.i.j.k);
z := false fi od od od
elif a = Christoffel2 then print(‘Christoffel symbols of the second
kind‘);
for k to Ndim do for i to Ndim do for j from i to Ndim do
if C.i.j.k <> 0 then print(‘ C ‘.(x.i).‘ ‘.(x.j)^(x.k) = C.i.j.k); z
:= false fi od od od

elif a = Riemann then print(‘covariant Riemann tensor components‘);
for i to Ndim-1 do for j from i+1 to Ndim do for k from i to Ndim-1 do
if k = i then t := j else t := k+1 fi;
for l from t to Ndim do
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if R.i.j.k.l <> 0 then print(‘ R ‘.(x.i).‘ ‘.(x.j).‘ ‘.(x.k).‘ ‘.(x.l)
= R.i.j.k.l); z := false fi od od od od
elif a = Weyl then print(‘covariant Weyl tensor components‘);
for i to Ndim-1 do for j from i+1 to Ndim do for k from i to Ndim-1 do
if k = i then t := j else t := k+1 fi; for l from t to Ndim do
if C.i.j.k.l <> 0 then print(‘ C ‘.(x.i).‘ ‘.(x.j).‘ ‘.(x.k).‘ ‘.(x.l)
= C.i.j.k.l); z := false fi od od od od
elif a = Ricciscalar then print(‘Ricci scalar‘); print (‘ R‘ = R);
z := false
elif a = Kretchmann then print(‘Kretchmann scalar‘); print (‘ K‘ = K);
z := false
elif a = dimension then print(‘dimension of the space‘); print(‘ Ndim‘
= Ndim); z := false
elif a = coordinates then print(‘the coordinates are‘);
print(seq(‘ x ‘.i = x.i,i = 1 .. Ndim)); z := false
elif a = detmetric then print(‘determinant of the covariant metric
tensor‘); print(‘ detg‘ = detg); z := false
else ERROR(‘argument must be one of:‘,’dimension’,’coordinates’,
’metric’,’detmetric’,’invmetric’,’Christoffel1’,’Christoffel2’,
’Riemann’,’Riemann2’,’Ricci’,’Ricciscalar’,’Kretchmann’,’induced’,
’Einstein’,’Weyl’,’NULL’) fi; if z then print(a = ‘All components are
zero‘) fi; NULL end;
#
# identity() performes the operation gij*hjk (covariant metric
# contracted with contravariant metric). If the contravariant metric
# is correct then a Ndim dimensional Kronecker delta is obtained.
# This is used when the contravariant metric is inputted by hand and
# not calculated using invmetric() in tensor; identity() then checks
# to see if hij is indeed the contravariant form of gij
#
identity:=proc() local i,j; global Ndim; option ‘Copyright 1994

by APB‘;
for i from 1 to Ndim do;
for j from 1 to Ndim do;
Q.i.j:=factor(simplify(sum(’h.i.k*g.j.k’,’k’=1..Ndim)));
od od;
print (‘Identity matrix if all goes well:‘);
for i from 1 to Ndim do;
print (seq(Q.i.j,j=1..Ndim));
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od;
NULL end;
#
# induced() calculates the four dimensional induced matter energy-
# momemtum tensor. The equation is obtained from section IV of
# ‘‘Exact Solutions and# the Effective Equation of State in Kaluza-
# Klein Theory’’ by J. Ponce de Leon and P.S. Wesson (J. Math. Phys.
# _34_, 4080 (1993)).
#
induced := proc () local i, j,a1,a2,a3,a4,a5,a6,a7, s; option
‘Copyright 1994 by APB‘;
s:=g55:
for i from 1 to 4 do;
for j from i to 4 do;
T.i.j:=0;T.j.i:=0;

od od;
print (‘calculating induced energy momentum tensor‘);
for i from 1 to 4 do;
for j from 1 to 4 do;
printf(‘%-s\n‘,‘ T‘.i.j.‘ ‘);
a1:=diff(s,x.i,x.j)/(2*s)-diff(s,x.i)*diff(s,x.j)/(4*s^2)

-sum(’C.i.j.k*diff(s,x.k)/(2*s)’,’k’=1..4);
a2:=1/(2*s)*diff(s,x5)*diff(g.i.j,x5)/(2*s);
a3:=1/(2*s)*diff(g.i.j,x5$2);
a4:=1/(2*s)*(sum(’sum(’h.k.l*diff(g.i.k,x5)*diff(g.j.l,x5)’,

’k’=1..4)’,’l’=1..4) );
a5:=1/(2*s)*(sum(’sum(’h.k.l/2*diff(g.k.l,x5)*diff(g.i.j,x5)’,

’k’=1..4)’,’l’=1..4) );
a6:=1/(2*s)*g.i.j/4*(sum(’sum(’diff(h.k.l,x5)*diff(g.k.l,x5)’,

’k’=1..4)’,’l’=1..4) );
a7:=1/(2*s)*g.i.j/4*(sum(’sum(’h.k.l*diff(g.k.l,x5)’,’k’=1..4)’,

’l’=1..4) )^2;
T.i.j:=simplify(a1-a2+a3-a4+a5-a6-a7);

od od;
printf(‘%-s\n‘,‘ ‘);

NULL end;
#
# Minkowski returns the 4-D part of the metric to a Minkowski metric,
# with time as the first coordinate and a signature of (+---).
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# Cartesian coordinates are used.
#
Minkowski:=proc() local i,j; global Ndim,al,x1,x2,x3,x4,g11,g12,g13,
g14,g21,g22,g23,g24,g31,g32,g33,g34,g41,g42,g43,g44; option

‘Copyright 1994 by APB‘;
Ndim:=4:for i from 1 to Ndim do:for j from 1 to Ndim do:
g.i.j:=0: od od:
g11:=1:g22:=-1:g33:=-1:g44:=-1:x1:=t:x2:=x:x3:=y:x4:=z:
NULL end;
#
# PonceDeLeon() creates the metric which describes the five
# dimensional cosmological solutions developed in Ponce de Leon,
# Gen. Rel. Grav. _20_, 539 (1988).
#
PonceDeLeon:=proc() global Ndim,al,x1,x2,x3,x4,x5,g11,g22,g33,g44,g55;
option ‘Copyright 1994 by APB‘;
Minkowski(): addoneD():cartesian():
g11:=Y^2:g55:=-al^2/(1-al)^2*t^2:
g22:=-t^(2/al)*Y^(2/(1-al)):g33:=-t^(2/al)*Y^(2/(1-al)):
g44:=-t^(2/al)*Y^(2/(1-al)):
display2(metric):
NULL end;
#
# Riemann2() calcuates the Riemann tensor with the first index raised.
#
Riemann2 := proc () local i, j, k, l, t,s ; option ‘Copyright 1994 by
APB‘;
print (‘ calculating Rieman tensor in the form R‘^‘ a‘*‘b c d‘);
for i to Ndim-1 do
for j from i+1 to Ndim
do for k from i to Ndim-1 do if k = i then t := j else t := k+1 fi;
for l from t to Ndim do
if R.i.j.k.l <> 0 then
s:=normal(sum(’R.q.j.k.l*h.i.q’,’q’=1..Ndim)):
RR.i.j.k.l:=s: RR.k.l.i.j:= s: RR.j.i.l.k := s: RR.l.k.j.i := s:
RR.j.i.k.l := -s: RR.i.j.l.k := -s: RR.k.l.j.i := -s:
RR.l.k.i.j := -s:

fi od od od od;
NULL end;
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#
# Similar_5d() creates the five dimensional metric that describes a
# 4-D fluid with pressure and density proportional to r^(-2). This
# metric is used to describe such systems as clusters and
# superclusters of galaxies.
#
Similar_5d:=proc() global Ndim,al,x1,x2,x3,x4,x5,g11,g22,g33,g44,g55;
option ‘Copyright 1994 by APB‘;
Minkowski(): addoneD():spherical():
g11:=(r/ro)^(2*(a+1))*Y^(2*(a+3)/a):g55:=3*(3-a^2)/a^2*r^2:
g22:=-(3-a^2)*Y^2:g33:=-Y^2*r^2:g44:=-Y^2*r^2*sin(th)^2:
display2(metric):
NULL end;
#
# spherical() makes sure the first coordinate is time (in the tensor
# library time is the 4th coordinate) and then makes the subsequent
# three coordinates r, th (for theta) and ph (for phi) (the 3-space
# metric components are spherical coordinates but flat)
#
spherical:=proc() global x1,x2,x3,x4,g22,g33,g44; option ‘Copyright

1994 by APB‘;
x1:=t:x2:=r:x3:=th:x4:=ph:
g22:=-1:g33:=-r^2:g44:=-r^2*sin(x3)^2:
NULL end;
#
# Vacuum_5d() creates the five dimensional metric that describes a
# 4-D de Sitter vacuum (p=-rho) with oscillating 3-D spatial section.
#
Vacuum_5d:=proc() global Ndim,al,x1,x2,x3,x4,x5,g11,g22,g33,g44,g55;
option ‘Copyright 1994 by APB‘;
Minkowski(): addoneD():cartesian():
g11:=Y^2:g55:=4/w^2:
g22:=-Y^2*exp(I*w*t):g33:=g22:g44:=g22:
display2(metric):
NULL end;
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