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Abstract

We examine generalizations of the five–dimensional canonical metric by including a

dependence of the extra coordinate in the four–dimensional metric. We discuss a more

appropriate way to interpret the four–dimensional energy–momentum tensor induced

from the five–dimensional space-time and show it can lead to quite different physical

situations depending on the interpretation chosen. Furthermore, we show that the as-

sumption of five–dimensional null trajectories in Kaluza–Klein gravity can correspond

to either four–dimensional massive or null trajectories when the path parameterization

is chosen properly. Retaining the extra–coordinate dependence in the metric, we show

the possibility of a cosmological variation in the rest masses of particles and a conse-

quent departure from four–dimensional geodesic motion by a geometric force. In the

examples given, we show that at late times it is possible for particles traveling along

5D null geodesics to be in a frame consistent with the induced matter scenario.
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1 Introduction

The modern version of non-compactified five–dimensional (5D) Kaluza-Klein gravity, in

which the 5D cylinder condition (∂4ĝAB = 0)1 has been eliminated in favour of retaining

the metric’s dependence on the extra coordinate, has had great success in describing four–

dimensional (4D) general relativity with an induced energy-momentum tensor (see [1] for a

recent review). The 5D space-time can be viewed as a foliation of 4D sheets on which general

relativity holds and a stress-energy tensor is induced through the metric dependence on the

extra coordinate [2]. This procedure is always mathematically possible due to local embed-

ding theorems which state that a 4D Riemannian manifold (GR) can be locally embedded

in a 5D Ricci-flat Riemannian manifold [3, 4].

In the induced–matter scenario, the induced Einstein tensor is typically constructed from

4D metric gαβ defined by

dŝ2 = gαβ(xΣ, `)dxαdxβ + εφ(xΣ, `)d`2. (1.1)

where the signature of the 4D metric gαβ is (+,−,−,−); also xΣ ≡ {xα}, and ε ≡ ±1,

which leaves the signature of the fifth dimension general and may allow a “two-time” metric

(these types of metrics may appear odd but can be shown to give sensible results in the

induced-matter context [5, 6]). However, it has been shown [7] that metrics of the “canonical

form”

dŝ2 =
l2

L2
gαβ(xΣ)dxαdxβ − d`2

lead to an induced false vacuum equation of state and hence this form naturally leads to an

1Throughout this paper we use accent circumflex to designate 5D quantities and no accents for 4D
quantities; also, uppercase Latin letters are used for the 5D manifold, and lowercase Greek indices are used
for the 4D manifold. This paper uses units 8πG = c = 1 unless explicitly stated.
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induced cosmological constant, which is parameterized by L. Hence, it would seem that for

manifolds of the form

dŝ2 =
l2

L2
gαβ(xΣ, `)dxαdxβ + εφ(xΣ, `)2d`2, (1.2)

part of the induced Einstein tensor would have a contribution from an induced cosmological

constant, an induced stress-energy from the ∂`gαβ contributions as well as contributions from

the scalar field φ.

Closely related to the induced-matter paradigm is the question of the interpretation of

5D geodesics. It has previously been shown [8] that if particles were to follow 5D geodesics,

then they cannot in general remain on ` = `0 hypersurfaces. Therefore, the induced stress-

energy tensor defined by gαβ would not be what is observed by an observer moving along

5D geodesics. Within the Space-Time-Matter (STM) theory [9, 10] to give a physically

meaningful interpretation to the extra coordinate, ` may be interpreted as the rest mass of

particles [11] and so the change in the rest–mass of a particle is dictated by the change in

`. Because the induced matter is derived from a simple 5D theory, it is tempting to assume

that the motion of particles is also naturally 5D (in fact, 5D geodesic since the 5D manifold

is a vacuum). However, in general this is incompatible with the induce–matter scenario.

In what follows we first derive the 4D induced energy–momentum tensor from gαβ in

(1.2), decomposing it into a false vacuum component, matter component and scalar field

component (if present). In the literature, the induced matter is typically interpreted as

either a perfect fluid or a fluid with anisotropic pressures, and we show that these are not

the only possible types of matter to model. To demonstrate this we present two examples.

We then explore the 5D null geodesic equation and show that these special geodesics can

3



reduce to 4D geodesics for massless particles, but there is an acceleration of massive particles

due to a geometric force (which has been previously labeled as a “fifth force” [12]) which

depends on a scalar field and has an explicit dependence on the extra dimension. We then

elucidate these ideas with same two models and then make our final remarks.

2 4D Induced Matter From 5D Vacuum

We wish to derive the induced matter resulting from the reduction of a 5D vacuum to a

4D hypersurface. Consider the following gauge choice for the 5D metric which explicitly

depends on the extra coordinate x4 ≡ `, and for which ĝα4 ∝ Aα (the electromagnetic vector

potential) is set to zero. We factor out a conformal dependence on the 4D metric and include

a scalar field so that the 5D metric can be written as

ĝAB =

(
`2

L2 gαβ(xΣ, `) 0
0 εφ2(xΣ, `)

)
. (2.1)

The easiest way to determine the induced matter on the 4D hypersurfaces (` = `o =

const.) is to decompose the 5D metric using a 4+1 decomposition; the “4” is used to designate

4D hypersurfaces with an induced metric (`2o/L
2)gαβ, and the “1” corresponds to the lapse

in the extra dimension between adjacent 4D hypersurfaces measured by the scalar field φ.

This procedure was initially performed in [2], and for the metric (1.1) the components of the

5D vacuum field equations R̂AB = 0 are:

R̂αβ = 0 ⇒ Rαβ =
1

φ
∇α∇βφ−

ε

φ
∂ `Kαβ + ε (KKαβ − 2KαγK

γ
β) , (2.2a)

R̂`β = 0 ⇒ ∇α (Kα
β − δαβK) = 0 , (2.2b)

R̂`` = 0 ⇒ ε2φ = ∂ `K − φKαβKαβ , (2.2c)
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where the covariant derivative and the d’Alembertian operator (2) are defined on the 4D

hypersurfaces. Here the extrinsic curvature of the embedded 4D hypersurfaces is defined as

Kαβ ≡ −
1

2φ
∂ `

(
`2

L2
gαβ(xΣ, `)

)
, (2.3)

and K ≡ Kα
α = L2

`2
gαβKαβ . It is evident that the extra coordinate dependence in the 4D

metric plays a crucial rôle in inducing matter in 4D. However, if ∂ ` gαβ = 0 then the only

consistent solution to the above equations is

∂ ` gαβ = 0 ⇒ Rαβ =
3ε

L2
gαβ , φ = 1. (2.4)

This solution can be identified as a false vacuum (i.e., µ = −p = Λ), provided the constant

L is identified with Λ via

Λ ≡ − 3ε

L2
. (2.5)

The induced cosmological constant generates either the de Sitter vacuum when ε = −1

(Λ > 0) or the anti-de Sitter vacuum when ε = +1 (Λ < 0, which leads to a two-time

metric). When the 4D metric depends on ` the extra terms generated by the derivatives

with respect to the extra coordinate (and possibly the scalar field terms) can be viewed

as the matter contribution to the stress-energy, whereas terms proportional to gαβ can be

related to the vacuum stress-energy.

Let us now investigate the matter induced from the energy–momentum tensor derived

from gαβ(xΣ, `), assuming that φ = φ(xΣ). First, we isolate terms in (2.2a) proportional

to gαβ and identify these terms with the induced effective cosmological “constant”, Λeff.

Therefore, we begin with

Kαβ = − `

φL2
gαβ −

`2

L2
Jαβ, (2.6)
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where

Jαβ ≡
1

2φ
∂`gαβ . (2.7)

Substituting (2.6) into (2.2a) leads to

Rαβ =
∇α∇βφ

φ
+

3ε

φ2L2

(
1 +

1

3
φ`J

)
gαβ+

ε`2

φL2

(
4Jαβ
`

+ ∂`Jαβ + φ(JJαβ − 2JαγJ
γ
β )

)
, (2.8)

(where J ≡ Jαα = gαβJαβ) and hence, the effective cosmological constant is defined as

Λeff = − 3 ε

φ2L2

(
1 +

`

6
gµν∂`gµν

)
. (2.9)

The induced Einstein field equations can thus be written

Gαβ = (φ)Tαβ + Λeff gαβ +
(M)Tαβ
φ

, (2.10)

where

(φ)Tαβ =
∇α∇βφ

φ
− 2φ

φ
gαβ , (2.11a)

(M)Tαβ =
ε`2

L2

{
4Jαβ
`

+ ∂`Jαβ + φ
(
JJαβ − 2JαγJ

γ
β

)
−1

2
gαβ

[
6J

`
+ gµν∂`Jµν + ∂`J + φ

(
J2 − JµνJµν

)]}
. (2.11b)

Note that five–dimensional vacuum relativity corresponds to a ω = 0 Brans–Dicke theory

[8], which is why we have left an explicit factor of φ−1 in front of the matter term in (2.10).

The case φ = 1 reduces to ordinary 4D relativity with matter.

It is necessary to comment on the kinematic quantities of (M)T αβ . Often in the literature

concerning induced matter from Kaluza–Klein theory, it is often assumed that the induced

stress–energy tensor represents either perfect fluid model or a fluid model with anisotropic

pressures. However, this is not necessarily the case; indeed the induced stress–energy tensor
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may not be appropriate for a fluid source at all. To represent a fluid source, the tensor

(M)T αβ must be of Segré type {1,1,1,1}; that is, in its Jordan form, (M)T αβ will be diagonal, the

components of which will be the eigenvalues of the energy–momentum tensor. One eigenvalue

will be associated with a time–like eigenvector and the other three will be associated with

space–like eigenvalues. If this is satisfied, then (M)T αβ can be modeled as a fluid with a time–

like velocity field uα. If the space–like eigenvectors are all equal then, and only then, can

the stress tensor be modeled as a perfect fluid. The kinematic quantities {µ, p, uα, qα, παβ}2

can thus be determined from the eigenvalues and eigenvectors, and Appendix A describes

how to compute these quantities for two important cases: fluids with heat conduction and

isotropic pressures, qα 6= 0 & παβ = 0, and fluids without heat conduction qα = 0 & παβ 6= 0.

We now present two examples.

2.1 Example A: Ponce de Leon metric

The first example is the one-parameter class of solutions found by Ponce de Leon [13]:

dŝ2 =
`2

L2

[
dt2 −

(
t

L

)2/α ( `
L

)2α/(1−α)

d~x · d~x
]
−
(

α

1− α

)2 ( t

L

)2

d`2 , (2.12)

where α is a constant. These solutions have been previously used in a cosmological context

since they are spatially isotropic and homogeneous, and on the induced 4D hypersurfaces they

are the analogues of the k = 0 FRW cosmologies. Using (2.9) for the effective cosmological

constant and (2.10) for the induced stress-energy tensors we find that

Λeff =
3(1− α)

(αt)2
(2.13a)

2Here, µ is the fluids energy density, p its averaged pressure, qα is the fluids heat conduction vector and
παβ is the fluids anisotropic pressure tensor.
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total stress-energy: T αβ =

[
3

(αt)2 0

0 − (2α−3)
(αt)2 δ

i
j

]
(2.13b)

scalar stress-energy : (φ)T αβ =

[ −3
2αt2

0
0 − 1

2αt2
δij

]
(2.13c)

matter stress-energy : (M)T αβ =

[
9

2(1−α)Lt
0

0 3
2(1−α)Lt

δij

]
, (2.13d)

where δij is the three–dimensional Kronecker–delta function. We note that the effective

cosmological constant decreases as t−2 which is compatible with string inspired cosmologi-

cal theories [14] and scalar-tensor gravity [15] (for an extensive bibliography on variable Λ

cosmologies see [16]). This is favourable for inflationary models since the cosmological term

is large for early times and then decreases to zero for late times. As is evident from the

induced energy–momentum tensor (2.13d), all three space–like eigenvalues are equal and so

(M)T αβ can aptly represent a perfect fluid with the energy–density (µ) and pressure (p) given

by

µ =
9

2(1− α)Lt
, p = − 3

2(1− α)Lt
=⇒ p = −1

3
µ. (2.14)

Here we see the fluid behaves like a barotropic fluid with a linear equation of state parameter

γ = 2/3. Note that it is necessary to impose that α ≤ 1 (µ ≥ 0) in which case the effective

cosmological constant is positive. Furthermore, one could demand that the stress-energy

tensor arising from the scalar field (2.13c) satisfies the energy conditions (weak, strong and

dominant), in which case α ≤ 0.

If the entire energy–momentum tensor is treated as one fluid, we obtain

µtot =
3

(αt)2
, ptot =

(2α− 3)

(αt)2
=⇒ ptot =

(
2

3
α− 1

)
µtot. (2.15)
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which is consistent with that found in [17]. In this case, we have a barotropic fluid with a

linear equation of state parameter γ = 2
3
α. The strong energy condition (µtot + 3ptot ≥ 0)

restricts α ≥ 1 while the dominant energy condition (µtot ≥ |ptot|) restricts 0 ≤ α ≤ 3. As

discussed in [17], there are three physically relevant choices for α: α ∈ (0, 1) for inflation,

α = 2 for radiation, and α = 3/2 for dust. For the latter two values, the cosmological

constant is negative (α = 0, 1 are bifurcation values and must be treated separately).

We present this second interpretation (2.15) to demonstrate how different the induced

matter can be when we consider the stress–energy tensor as a conglomerate of three sepa-

rate sources, but feel the first interpretation (2.14) is more appropriate. First of all, such

a decomposition is consistent with how the five–dimensional vacuum theory is mathemat-

ically equivalent to four–dimensional Brans–Dicke theory (with or without a cosmological

constant). Secondly, by considering the scalar field as a separate source, problems such as

the discrepancy between gravitational and inertial mass can be resolved (see, for example,

[18]).

2.2 Example B: Shell–like Solutions

The next example is a two-parameter class of spherically symmetric solutions [19]:

dŝ2 =
`2

L2

(
A2dt2 −B2dr2 − C2r2dΩ2

)
− d`2, (2.16)

where

A =
1

B
+
k2L

`
, (2.17a)

B =
1√

1− r2

L2

, (2.17b)

C = 1 +
k3L2

r`
, (2.17c)
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(note that this form can be expressed in the original form given in [19] by letting k2 → k2/k1

and t → k1t). Since these models have φ = 1 they correspond to 4D relativistic models

(as opposed to 4D ω = 0 Brans–Dicke models). These solutions have been termed “shell”

solutions since at

r = rC =
|k3|L2

`
(2.18)

(where C(rC) = 0) the density and pressure of the fluid found in [19] diverged (at r = rC

the surface area of the two sphere, 4πr2C2, is zero and so this may be taken as the origin of

the system), and at

r = rA = L

√
1− k2

2L
2

`2
, (2.19)

(where A(rA) = 0) the pressure diverges. Note that rA and rC coincide at

r0 =
|k3|√
k2

2 + k2
3

L (2.20a)

`0 =
√
k2

2 + k2
3 L, (2.20b)

and so for {r, `} < {r0, `0} we have that rA < rC ; since rC is defined as the centre of the

system, rA is excluded from the manifold for ` < `0.

The four–dimensional component of this metric is the de Sitter metric when the pa-

rameters k2 and k3 are both zero; thus because of the dependence on the extra-coordinate,

this metric may be interpreted as a generalization to the de Sitter vacuum with an effective

cosmological constant. To preserve the signature, the radial coordinate must obey r < |L|.

Furthermore, we adopt the assumptions used in [19] that L > 0, ` > 0, k2 < 0 and k3 < 0.

Now, equations (2.9)-(2.11) reduce to:

Gα
β = diag

[
(1 + 2C)

L2C2
,
(AB + 2C)

L2ABC2
,
C +AB + 1

L2ABC
,
C +AB + 1

L2ABC

]
, (2.21a)
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Λeff =
C + 2AB

L2ABC
, (2.21b)

(M)T αβ = diag

[
(AB − C2)

L2ABC2
,
(AB − C2) + 2C(1− AB)

L2ABC2
,
(1− AB)

L2ABC
,
(1− AB)

L2ABC

]
.

(2.21c)

Clearly, the eigenvalues of the induced energy–momentum tensor (2.21c) are (see appendix)

λ+ =
(AB − C2)

L2ABC2
, (2.22a)

λ− =
(AB − C2)

L2ABC2
+ 2

(1− AB)

L2ABC
, (2.22b)

λ2 = λ3 =
(1−AB)

L2ABC
. (2.22c)

At this point, one can model (M)T αβ as an imperfect fluid, but there is no unique choice.

However, because λ2 = λ3 there are two obvious models from which to choose: a fluid

with heat conduction and isotropic pressures (qα 6= 0, παβ = 0) and a fluid with no heat

conduction and anisotropic pressures (qα = 0, παβ 6= 0).

2.2.1 Heat Conduction with Isotropic Pressure

For the case qα 6= 0 and παβ = 0, equations (A.15) in the appendix lead to the following

kinematic quantities:

µ =

(
1− AB
L2ABC

+ 2
AB − C2

L2ABC2

)
, (2.23a)

p = −
(

1− AB
L2ABC

)
, (2.23b)

uα =
1√

2(1−AB)C

[
−
√

(C + 1)(C − AB)

A
,

√
(C − 1)(C +AB)

B
, 0, 0

]
, (2.23c)

qα =

√
(C2 − 1)(C2 − A2B2)

L2AB
√

2(1− AB)C5

[
−
√

(C − 1)(C +AB)

A
,

√
(C + 1)(C − AB)

B
, 0, 0

]
,

(2.23d)
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q2 =
(1− C2)(A2B2 − C2)

(L2ABC2)2
(2.23e)

(where it can be verified that uαuα = 1). As discussed in the appendix, (M)T αβ will be of

Segré type {1,1,1,1} if (µ+ p)2 − 4q2 > 0 and indeed

(µ+ p)2 − 4q2 =
4(AB − 1)2

(L2ABC)2
> 0. (2.24)

2.2.2 Anisotropic Pressure with No Heat Conduction

For the case where qα = 0 and παβ 6= 0, equations (A.16) yield

µ =
(AB − C2)

L2ABC2
, (2.25a)

p = −1

3

AB − C2

L2ABC2
− 4

3

(1− AB)

L2ABC
, (2.25b)

uα =

[
1

A
, 0, 0, 0

]
(2.25c)

παβ =


0 0 0 0

0 −2
3

(C−1)(C+AB)
L2ABC2 0 0

0 0 1
3

(C−1)(C+AB)
L2ABC2 0

0 0 0 1
3

(C−1)(C+AB)
L2ABC2

 . (2.25d)

Clearly, as sections 2.2.1 and 2.2.2 demonstrate, the same 5D metric can yield two very

different physical models. In the first case the induced matter is that of a fluid which has

heat conducting in the radial direction, whereas the second case is an induced matter without

heat conduction but with anisotropic pressures (the radial pressure is different from the solid

angle pressure). However, these are not the only possible models from which to choose. For

instance, in [20] it has been shown that stress tensors of Segré type {1, 1, (1, 1)} can also be

used to model a perfect fluid and a electromagnetic field (either null or non–null).
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3 Motion, Mass Variation, and the Geometric Force

In this section we approach particle dynamics from a 5D Lagrangian for the canonical metric

(2.1) and use the Euler-Lagrange equations to obtain the acceleration equation induced in

4D. When the path parameterization is chosen judiciously we show that the components

of the 5D acceleration equation reproduce the 4D geodesic equation for null particles and

an acceleration equation for massive particles. With the interpretation is that the extra

coordinate is related to the rest-masses of particles [11] the 5D null geodesics lead to a rest-

mass variation for massive particles. We elucidate these results with the models studied in

2.1 and 2.2.

3.1 Motion and Mass Variation

To study dynamics in 5D Kaluza-Klein gravity with the canonical metric (2.1) we begin by

extremizing the action

Î =

B∫
A

L̂(xA, ẋA) dλ =

B∫
A

dλ

√
`2

L2
gαβ(xΣ, `)

dxα

dλ

dxβ

dλ
+ φ2(xΣ, `)

d`2

dλ2
, (3.1)

where λ is an arbitrary path parameter and the velocities are coterminal at the points A,B.

With these boundary conditions, extremizing the action gives the well-known Euler-Lagrange

equations

d

dλ

(
∂L̂
∂ûA

)
− ∂L̂
∂xA

= 0 ⇒ dûA

dλ
+ Γ̂ABC û

B ûC = ûA
d

dλ

(
ln L̂

)
. (3.2)

The 4D and ` components of equation (3.2) are

uβ∇βu
α =

d

dλ
ln

(
L̂
`2

)
uα − gαβ

[
∂ `gβγu

γ +
1

2

(
Lφ

`

)2

∂β
(
lnφ2

)
˙̀

]
˙̀ (3.3a)
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(
Lφ ˙̀

`

)Υ

[
ln

(
Lφ ˙̀

`

)]̇
+
φ̇

φ

Υ−
(
Lφ ˙̀

`

)2


=
1

2

Υ−
(
Lφ ˙̀

`

)2
2Υ

`
+ ∂ `gαβu

αuβ −
(
Lφ ˙̀

`

)2

∂ ` lnφ2

 ,
(3.3b)

where a dot is shorthand for d/dλ. If the parameterization, λ, were chosen to be either

the 5D proper distance, ŝ, or a 5D null parameterization, then term on the right hand

side of (3.2) vanishes (and hence (3.2) describe 5D geodesics); however, we have chosen the

parameterization to be the 4D proper distance, λ = s, so that uαuα ≡ Υ (where Υ = 1 for

timelike paths and Υ = 0 for null paths). The extra terms on the right hand side of the

equations (3.3) are a consequence of this choice rather than the 5D proper distance λ = ŝ

[12]. Solving equation (3.3b) for ˙̀ is very complicated, and in general the quantities {gαβ, φ}

would have to be first specified. However, from (3.3b) it is apparent that the solution(
˙̀

`

)2

=
Υ

L2φ2
(3.4)

satisfies (3.3b) identically for any {gαβ, φ}. It may be verified that (3.4) represents 5D null

geodesics by examining the 5D canonical line element (1.2). Hence, the particle paths are

consequently 5D null even though we have chosen the 4D proper distance λ = s to be the

path parameter.

Relation (3.4) constrains the velocity ˙̀ but does not give it physical meaning; for this, we

turn to Kaluza-Klein theories in which the extra coordinate can be interpreted as a geometric

mass via ` = Gm/c2 [1, 9–11, 21]. We now look at the variation of rest mass as a function of

the 4D path parameterization. The rest mass of a particle is easily obtained from integrating

14



(3.4):

m = mo exp

(
±
√

Υ

L2

∫
dsφ−1

)
. (3.5)

Since in 4D we have Υ = 0 for photons, this implies that the variation in a photon’s rest

mass is zero and so its mass may consistently be set to zero. However, for 4D paths which

have Υ = 1, there is a variation in the rest-mass of massive particles driven by the scalar

field φ and hence φ may be modeled as a Higgs-type field. Let us make a few comments:

1. A conformal transformation of the 4D metric g → g̃ = φ2g would remove the scalar-

field dependence in (3.5), but also changes the induced-matter field equations as well

as the 4D acceleration aα = uµ∇µuα, and complicates matters substantially.

2. When the 4D condition ∂ ` gαβ = 0→ φ = 1 is imposed, we get a cosmological variation

of the rest masses of massive particles in the de Sitter vacuum (ε = −1), namely that

m = m0e
±(s−s0)/L. (3.6)

3. If we choose a two-time metric (ε = +1) the variation is imaginary, giving an oscil-

lating rest mass in the anti-de Sitter vacuum (this oscillation will hold even for more

complicated metrics which do not obey ∂ ` gαβ = 0).

We now turn our attention to the acceleration equation (3.3a). After some algebra, equation

(3.3a) reduces to the form

uβ∇β u
α = fα , (3.7)

where fα is the force per unit rest mass

fα = −hαγ
(

Υ
φγ
φ

+ ∂ ` gγβ u
β ˙̀
)
, (3.8)
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and hαγ ≡ gαγ − uαuγ is the projection tensor. When ∂ ` gαβ = 0 (φ = 1), this force term

vanishes, and the motion is geodesic for both photons and massive particles in a pure 4D de

Sitter vacuum, which is the correct 4D result in general relativity. However, when ∂ ` gαβ 6= 0,

photons will still travel along null 4D geodesics since they obey Υ = 0 and ˙̀ = 0; but massive

particles will experience a geometric force since Υ = 1 and ˙̀ 6= 0. We now consider some

examples to elucidate these ideas.

3.2 Example A: Ponce de Leon solutions

In this section we revisit the example first discussed in section 2.1. We will show that the rest

masses of particles may vary in a cosmological frame which employs a comoving coordinate

system, and make some comments about the observability of the geometric force.

Since the 4D metric of (2.12) has a non-trivial `-dependence, Λeff is not constant. Fur-

thermore, there is a non-trivial mass-variation, and equation (3.4) reduces to the following

rest-mass variation (by identifying ` with m):

ṁ

m
= ±

(
1− α
α

)
1

t
. (3.9)

Assuming t ∼ 109 yr as an order of magnitude for the age of the Universe [22, 23], we find

that for α . 1 the variation of rest masses is less than 10−11 yr−1 which is consistent with

the classical tests of 4D general relativity [1, 24].

The acceleration equation for the Ponce de Leon metric is simplified by the comoving

coordinate system. In general, the assumption that the spatial velocities are constant (ui =

0), implies that the scalar field can only depend on time, so φ = φ(t). Thus we can conclude

that any 5D metric in the canonical form of (2.1), which has the 4D section gαβ(xΣ, `) written

in comoving coordinates with a time-dependent scalar field, will not impart a geometric force
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and the motion will be 4D geodesic. This applies to any spatially isotropic and homogeneous

model (i.e., most cosmological models) wherein comoving coordinates may be employed.

3.3 Example B: Shell-like Solutions

For the class of solutions (2.16), φ = 1 and thus

˙̀

`
= ±
√

Υ

L
⇔ ˙̀∝ e±

√
Υ(s−s0)/L. (3.10)

Hence, this allows ˙̀ → 0 at late times and so the geometric force acting on the 4D parti-

cle motion can exponentially decay in proper time, s; particles following this motion will

asymptote toward ` = `0.

In order to explicitly calculate the geometric force (3.8), we first need to determine the

four–dimensional velocities uα. These can be obtained either from solving (3.7) or deriving

them from the 5D geodesics. Since the five-dimensional manifold is Riemann flat, the 5D

geodesics are easily obtainable, and it can be shown that the 5D null geodesics are satisfied

by

dt

dŝ
=

L2E

`2A2
, (3.11a)

dϕ

dŝ
=

L2J
`2r2C2

, (3.11b)

dr

dŝ
=

1

lB2

(
L
√
Q1 − εrB

√
Q2

)
, (3.11c)

d`

dŝ
=

1

LB

(
rB
√
Q1 + εL

√
Q2

)
, (3.11d)

where

Q1 = ζ2
0 −

L2J 2

`2r2C2
, (3.12a)

Q2 =
L2E2

`2A2
− ζ2

0 , (3.12b)
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ε2 = 1, and {E,J , ζ0} are integration constants in which E may be interpreted as the energy

per unit rest mass and J is the angular momentum per unit rest mass (note that we have

consistently chosen the declination angle to be θ = π/2 with dθ
dŝ

= 0).

To obtain the 4D velocities, it is easy to show from the line element of this space–time

dŝ2 =
`2

L2
ds2 − d`2

that for 5D null geodesics

dŝ

ds
=
`
√

Υ

φL

(
d`

dŝ

)−1

, =⇒ ẋα =
`
√

Υ

φL

dxα

dŝ

(
d`

dŝ

)−1

, (3.13)

and therefore, the 4D velocities for massive particles (Υ = 1) are

ṫ =
L2BE

`A2
[
rB
√
Q1 + εL

√
Q2

] , (3.14a)

ϕ̇ =
L2BJ

`r2C2
[
rB
√
Q1 + εL

√
Q2

] , (3.14b)

ṙ =
1

B

(
L
√
Q1 − εrB

√
Q2

rB
√
Q1 + εL

√
Q2

)
. (3.14c)

It is apparent from these velocities that there will in general be a geometric force acting on

massive particles,

uβ∇β u
α = −2hαγ

[
δ0
γ |k2| Aṫ− δ3

γ |k3|
L

`
rCϕ̇

] ˙̀

`
. (3.15)

As is evident in (3.15), we clearly see a drag force in the φ direction, which is odd for

spherically-symmetric solutions. However, this is not unique to this particular solution and

from equation (3.8) it is apparent that there will in general be such drag terms as long as

the angular part of the metric has dependence in the extra coordinate.
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4 Final Comments

By retaining the extra coordinate x4 = ` in 5D Kaluza-Klein gravity we have seen that a

5D vacuum induces non-trivial matter on 4D hypersurfaces ` = `o, in which we retrieve a

component which acts as a cosmological “constant”, a component which can be modeled

as a fluid and a scalar field contribution (if present). Rather than considering all three

components as a single fluid source, we feel it is important to keep the components distinct

because of the close connection between 5D vacuum relativity and 4D general relativity

with matter and a scalar field (see [8]), and because the discrepancies between gravitation

and inertial masses do not arise when one considers the scalar field separately (see [25]).

In particular, we use the eigenvalues and eigenvectors of the induced energy–momentum

tensor to properly interpret the induced matter. However, the induced stress–energy tensor

does not in general uniquely determine the matter content and the interpretation chosen

(for example, whether to model it as with heat conduction or not, etc.) can lead to quite

different kinematic quantities.

We have shown that the assumption of 5D null geodesics can lead to a variable rest mass

for massive particles, once we identify the extra dimension with mass. The existence of a

scalar field could be inferred from particle motion in the coming Satellite Test of the Equiv-

alence Principle (STEP) [26], and consequently any such scalar field would place constraints

on the rest mass variation. The acceleration for null particles remained the same as in regu-

lar 4D relativity, but the motion for massive particles was augmented by an additional force.

This force has a contribution from a scalar field and crucially depends on the existence of the

extra dimension. This motion was investigated for the Ponce de Leon class of solutions with
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a particular extra coordinate dependence that induced a time-varying cosmological constant

Λ ∼ t−2. For this metric there is no fifth force due to the nature of the comoving coordinate

system. Indeed, for any metric which allows comoving coordinates there will be no fifth force

and so a majority of simple cosmological models (e.g., non-tilting models, etc.) in general

will appear to allow motion which is geodesic in 4D. For the Shell–like solutions, the 4D

motion of particles derived from 5D null geodesics indeed asymptote to 4D geodesics since

˙̀ → 0 exponentially. In this example, the induced–matter is not what would be observed

by particles traveling along 5D null geodesics until at late times. Indeed, the two paradigms

(induced matter and 5D geodesics) are distinct. One cannot say in general that particles

traveling along 5D null geodesics will observe the induced matter derived from ` = `0 hyper-

surfaces, but as the Shell–like solutions demonstrate, it may be possible that at some point

in the particle’s path (early proper times, late proper times, etc) that the two theories will

indeed coincide.

Furthermore, any “angular” drag force terms which arise, as demonstrated in the Shell–

like solutions, would induce motion which deviates from that of classical 4D motion and thus

provides constraint on this theory. For example, the absence of drag terms in the angular

direction in 4D motions suggest that an appropriate 5D metric should be independent of the

extra coordinate in the angular components. It seems that we should turn to `-dependent

analogues of the Schwarzschild metric to observe and test any deviations from the classical

tests of GR due to the fifth force. Work on this is under way, and we expect to relate 5D

dynamics to the upcoming Space Test of the Equivalence Principle. Finally, it is important to

note that the 4D velocities of the test particles derived from the 5D motion do not correspond
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to the velocities of the induced fluids, although this has often been assumed in the past (for

a full discussion, see [27]), but rather they should be interpreted as the velocity of a test

particle traveling through the fluid. This is a consistent interpretation within regular GR in

which geodesics are assumed for test particles traveling through a fluid [28, Ch. 5.3]
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A Extracting Kinematic Quantities from the Energy–

Momentum Tensor

This appendix describes how kinematic variables can be obtained from eigenvalues and eigen-

vectors of the energy-momentum tensor for non-perfect fluids, generalizing the work found

in [29, Chapter 5.1]. Various energy-momentum tensors have physical restrictions based

on their Segré type [20, 30]. One must insist that the metric’s determinant be Lorentzian

(det gαβ < 0), which eliminates Segré types {22} and {4} [20, 30]. Furthermore, the strong

energy condition, T αβ t
βtα > 0 (where tβ is any time–like vector) eliminates Segré types

{z, z̄, 1, 1} and {3, 1}. Finally, the only Segré type that admits a time–like eigenvector is

{1, 1, 1, 1} and its degeneracies, which is necessary for considering fluids with a time–like

velocity, ua. Thus, the main focus here will be on energy-momentum tensors of Segré type

{1,1,1,1} and its degeneracies.
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We begin by assuming the standard non-perfect fluid energy momentum tensor,

T αβ = (µ + p) uαuβ − pδαβ + uαqβ + uβq
α + παβ , (A.1)

where uα is the fluids velocity field, µ is the fluid’s energy density, p is the averaged pressure,

qα is the heat conduction vector and παβ is the anisotropic pressure tensor. These quantities

are constrained by

uβπαβ = 0, uβqβ = 0, παα = 0, uαuα = 1, qαqα ≡ −q2. (A.2)

One could equally write

T αβ = (µ+ p− ζθ)uαuβ − (p− ζθ)δαβ + uαqβ + uβq
α − 2ησαβ , (A.3)

to introduce the velocity’s shear tensor, σαβ , its expansion scalar, θ, as well as the fluid’s

bulk viscosity coefficient, ζ, and its shear viscosity, η. One must be careful here, since it is

the velocity alone which determines σαβ and θ, and so if one may indeed have σαβ 6= 0 even

if it was initially assumed to be zero. The expansion term may be “absorbed” by letting

p = p̃ + ζθ, and so this term can never be determined from the eigenvalues of T αβ alone.

Therefore, the form (A.1) will be used throughout. Should σαβ 6= 0 and παβ ∝ σαβ , then the

shear viscosity coefficient, η can also be calculated.

If one assumes that παβ 6= 0, then it will have three eigenvectors associated with its

principle axes: vα(i) (i = {1, 2, 3}), where vα(i)v(i)α = −1, and vα(i)v(j)α = 0 for i 6= j. Therefore,

we write παβ =
∑

i πiv
α
(i)v(i)β (summation over for i will remain explicit). Since παα = 0 then

π1 + π2 + π3 = 0 and there are only two independent values for {π1, π2, π3}. Hence, we will

assume the the three space–like eigenvectors can be written in terms of these three vectors.
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Should there be no anisotropies, va(1) can be used to denote the direction of qα = q1vα(1) and

vα(2), v
α
(3) will be the (eigen)vectors perpendicular to qα and uα.

All eigenvectors, yα, will contain p, so to reduce computation we will define

T̃ αβ ≡ T αβ + pδαβ , (A.4a)

λ̃ ≡ λ+ p, (A.4b)

where λ̃ is defined by

T̃ αβ y
β = λ̃yα. (A.5)

Hence, for qα =
∑

i qiv
α
(i) and παβ =

∑
i πiv

α
(i)v(i)β, we have:

T̃ αβ u
β = (µ+ p)uα + q1v

α
(1) + q2v

α
(2) + q3v

α
(3), (A.6a)

T̃ αβ v
β
(i) = −

[
qiu

α + πiv
α
(i)

]
(A.6b)

T̃ αβ q
β = −

[
q2uα +

3∑
i=1

qiπiv
α
(i)

]
, (A.6c)

where q2 = q2
1 +q2

2 +q2
3. If one multiplies each equation of (A.6b) with qi and sum, one yields

equation (A.6c) and so the last may be omitted when considering qα 6= 0, παβ 6= 0. However,

in the event that παβ = 0 or qβπαβ = 0, then one may take vα(1) as the direction of qα and

the other two perpendicular to vα(1), and so the first equation of (A.6b) may be replaced by

(A.6c).

In general, we seek eigenvectors of the form

χα = auα + bvα(1) + cvα(2) + dvα(3), (A.7)

where {a, b, c, d} ∈ R. Hence, (A.5) yields the four equations:

aλ̃ = a(µ+ p)− bq1 − cq2 − dq3, (A.8a)
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bλ̃ = aq1 − bπ1, (A.8b)

cλ̃ = aq2 − cπ2, (A.8c)

dλ̃ = aq3 − dπ3. (A.8d)

Here, we have four equations for five unknowns {λ̃, a, b, c, d} and so we may arbitrarily set

one to a particular value (say, to normalize the vector). This is a reflection of the fact that

eigenvectors can be arbitrarily scaled without affecting (A.5). Although this may make the

system determined, we need to express the seven quantities {µ, p, q1, q2, q3, π1, π2} in terms

of the four eigenvalues, and so we would then need auxiliary equations (at most 3) to specify

all parameters. However, we shall only consider here two cases, παβ = 0, qα 6= 0 and παβ 6= 0

and qα = 0, and for these cases the system is closed.

A.1 Case 1: πab = 0

For παβ = 0, it has been shown that T αβ has to be of Segré type {1, 1, (1, 1)} [30] (providing

that (µ+p)2 +4q2 > 0), with two degenerate eigenvalues. Here, the eigenvectors vα(2,3) will be

orthogonal to uα and qα with eigenvalues λ2 = λ3 = −p. We then need to find the two other

eigenvectors χα± and their corresponding eigenvectors λ̃±. In this case, we may let b → bq1

(q2
1 = q2) and consider only (A.8a) and (A.8b):

aλ̃± = a(µ+ p) − bq2

bλ̃± = a.

The solutions to these equations are

a±
b±

= λ̃± =
1

2
(µ+ p)± 1

2

√
(µ + p)2 − 4q2 (A.9a)

λ± = −1

2
(p− µ)± 1

2

√
(µ + p)2 − 4q2. (A.9b)
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Defining,

∆λ ≡ λ+ − λ− =
√

(µ+ p)2 − 4q2, (A.10a)

λ̄ ≡ 1

2
(λ+ + λ−) = −1

2
(p− µ), (A.10b)

Λ ≡ λ2 − λ̄ = −1

2
(p+ µ), (A.10c)

the magnitudes of χa± are

χ2
+

b2
+

{
= 1

2
[(µ + p)2 − 4q2] + 1

2
(µ + p)

√
(µ+ p)2 − 4q2

= 1
2
∆λ2 − Λ∆λ

, (A.11)

χ2
−
b2
−

{
= 1

2
[(µ + p)2 − 4q2]− 1

2
(µ + p)

√
(µ+ p)2 − 4q2

= 1
2
∆λ2 + Λ∆λ

, (A.12)

χα±χ∓α = 0, (A.13)

where it may be shown that |Λ| > 1
2
|∆λ| for q2 > 0, and so χα+ is time–like (χ2

+ > 0) and χα−

is space–like (χ2
− < 0). Hence, by defining

b−2
± = −Λ∆λ± 1

2
∆λ2 > 0, (A.14)

we normalize these vectors to χα±χ±α = ±1.

The kinematic variables are, in terms of the eigenvalues/eigenvectors,

µ = λ+ + λ− − λ2, (A.15a)

p = −λ2, (A.15b)

q2 = [λ2 − λ+] [λ2 − λ−] , (A.15c)
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uα =
1

∆λ

(
χα+
b+
− χα−
b−

)
, (A.15d)

qα =
1

2

(
χα−
b−

+
χα+
b+

)
+

Λ

∆λ

(
χα+
b+
−
χα−
b−

)
. (A.15e)

As evident from the magnitudes of χa± we have the following cases:

1. (µ+p)2 > 4q2: χα− is time–like and χα+ is space–like. Segré type {1, 1, (1, 1)}; physically

relevant.

2. (µ+ p)2 = 4q2: λ+ = λ− and χα± are null. Segré type {2, (1, 1)}.

3. (µ+ p)2 < 4q2: λ± and χα± are complex. Segré type {z, z̄, (1, 1)}.

A.2 Case 2: qα = 0

This case is fairly simple, since vα(i)uα = 0 and vα(i)v(j)α = 0, and so it is quite apparent that

{uα, vα(1), v
α
(2), v

α
(3)} are eigenvectors (see equations (A.6a) and (A.6b)). Denoting λ0 to be the

eigenvalue associated with uα, one has

µ = λ0 (A.16a)

p = −1

3
(λ1 + λ2 + λ3) (A.16b)

πi = −λi − p = −
[
λi −

1

3

3∑
j=1

λj

]
(A.16c)

If one finds σαβ 6= 0 and σαβ ∝ παβ then the shear viscosity coefficient may be determined via

η = − π1

2σ1
= − π2

2σ2
= − π3

2σ3
, (A.17)

where σi are the eigenvalues of the shear tensor.
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